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Timişoara, Romania
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The Theorema system

Web page:
www.risc.jku.at/theorema

Conceived and initiated around 1995 by Bruno Buchberger
and reflects his view of “doing mathematics”.

Theorema 2.0 is a major re-launch

Mainly developed by Wolfgang Windsteiger.

Implementation: Mathematica

Proving uses only the rewrite mechanism of Mathematica.

Supports:

Development of mathematical theories in natural style.

Proving in natural style.

Definition and execution of algorithms.

Construction of provers for various domains.
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Installation

Home page:
www.risc.jku.at/research/theorema/software

User mode

Mathematica software needed

Download the Theorema package and copy it in the
Mathematica folder

Developer mode

Needed: Mathematica, Eclipse, JDK, Workbench

Download the Theorema package and include it in Eclipse

Installation guide here.
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Loading Theorema in user mode

Figure: Loading Theorema Figure: Theorema commanderIsabela Drămnesc Introduction to the Theorema System 5 / 65



Introduction to the system
Algorithm synthesis

Algorithm verification
Conclusions

Create a new notebook
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Proving
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Options to choose from
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Prove submit
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The proof and the proof tree
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Simplify the proof
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Both simplified and full proof

Isabela Drămnesc Introduction to the Theorema System 17 / 65



Introduction to the system
Algorithm synthesis

Algorithm verification
Conclusions

The simplified proof
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Exercises (proving)
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Theory exploration
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Compute with definitions
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Select KB
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Compute Insert
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Show computation steps
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Compute with predicate definitions
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Compute with predicate definitions
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Computational Logic: A Practical Approach. Editura Universitatii de Vest, 2022.

Acknowledgements: This work was co-funded by the European Union, Erasmus+ project
ARC: Automated Reasoning in the Class, 2019-1-RO01-KA203-063943, 2019 - 2022,

www.arc.info.uvt.ro
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AlCons: A Prover for Deductive Synthesis of Sorting
Algorithms in Theorema

Outline

Problem and approach

AlCons implementation overview

Demo in Theorema

Algorithm generation on binary trees
Compute with the extracted algorithm
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Algorithm synthesis

Starting from a specification of a problem

find an algorithm which satisfies the specification
including auxiliary algorithms (subroutines)

Synthesis by proving:

specification −→ conjecture

prove

proof −→ algorithm

Main goal:

Design methods, inference rules and strategies for
constructing proofs (efficient, natural style)
and for synthesizing auxiliary functions.
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Motivation

Investigate the effect of different proof techniques
−→ synthesize different algorithms.

Study the structure of natural style proving.

Explore the appropriate theories (by adding properties and
functions to the knowledge base during proof attempts).

Find efficient proof strategies and inference rules appropriate to
the domains of lists, binary trees, and multisets.

Use multisets to express naturally the fact that two lists/trees
have the same elements and to guide the synthesis proof.
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Problem and Method

Problem: Given a specification, find a correct algorithm.
Specification: Input condition (I ), output condition (O).
Synthesis conjectures:

Unary functions: ∀
X
(I [X ] =⇒ ∃

Y
O[X ,Y ]).

Binary functions: ∀
X
∀
Y
(I [X ,Y ] =⇒ ∃

Z
O[X ,Y ,Z ]).

Proofs:

Automatically generated by AlCons:
success: proof −→ algorithm
failure: “cascading” (generates further synthesis conjectures
for synthesis of auxiliary functions)

Algorithm extraction:

One or more algorithms from one proof.

Case studies: Sorting of lists and binary trees.
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Types

Elements: a, b, c
total order: a < b, a ≤ b

Lists: U,V ,W ,X ,Y
inductive domain: ⟨⟩, a ⌣ U
extended order: a < U, a ≤ U, U < a, U ≤ a, U < V , U ≤ V

Binary trees: L,R,S ,T ,X ,Y ,Z
inductive domain: ε, ⟨L, a,R⟩
extended order: a < L, a ≤ L, L < a, L ≤ a, L < R, L ≤ R

Multisets:
M[⟨⟩] = ∅ M[ε] = ∅

M[a ⌣ V ] = {{a}} ⊎M[V ] M[⟨L, a,R⟩] = M[L] ⊎ {{a}} ⊎M[R]
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AlCons: Implementation Overview

The prover: a collection of rewrite rules corresponding to
inferences (called proof steps).

a proof situation (assm, goal)
rule−→ new proof situation

Alternatives: an AND-OR proof tree is created,

In contrast to the usual behavior of Theorema provers,
AlCons follows all alternatives −→ may lead to different
algorithms.

Some of the alternatives may also fail – the termination is
ensured by the Theorema mechanism for controlling the
depth of the proof tree.
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Implementation Overview

AlCons is a first order prover based on the methods:

Classical propositional and first order inferences similar to the
ones from sequent calculus.

Cover set induction applied both to universal and to
existential goals.

Domain specific methods for the types handled by the prover
(multisets, lists, and binary trees).

These methods are implemented as:

Inference rules: describe how to change the proof status in
one proof step.

Strategies: describe how to combine several inference rules.
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Cover Set: Set of terms covering the domain.

Each element of the domain instantiates exactly one cover term.
For binary trees: {ε, ⟨L, a,R⟩} (L, a,R: variables).

Target goal: ∀
X
∃
Y
P[X ,Y ]

Skolem−→ ∃
Y
P[X0,Y ]

metavar−→ P[X0,Y
∗]

X0: target constant, Y
∗: target metavariable

On Skolem constants: Prove P[ε,Y ∗] and P[⟨L0, a0,R0⟩,Y ∗]

may use P[L0,F [L0]] and P[L0,F [R0]] (F : synth. funct.)

determines the decomposition of the input

On metavariables:
Prove P[X0, ε] and P[X0, ⟨L∗, a∗,R∗⟩]

may replace L∗ by F [L∗1] and R∗ by F [R∗
1 ]

determines the structure of the output

In a nested way on the new Skolem constants and metavariables
−→ Algorithms with nested recursion, and with recursion on

several arguments
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Dynamic induction

Dynamically generates new induction hypotheses during the proof.

Noetherian induction based on the well–founded ordering:
L ≺ R is M[L] ⊂ M[R]

Checked syntactically at meta–level: meta–relation between terms
induced by the strict inclusion of the multisets of symbols

Example: ⟨L0, a0,R∗⟩ ≺ ⟨L0, a0, ⟨R∗, b0, S
∗⟩⟩

Usage:

ground term t ≺ X0 (target constant):
add P[t,Sort[t]] to assumptions.

metavariable L∗ ≺ Y ∗ (target metavariable):
replace in goal L∗ by F [L∗] (target function applied to a new
metavariable)
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Strategy: Cascading (conjecture generation)

Synthesizing auxiliary functions:

generate conjecture

prove conjecture −→ algorithm

use auxiliary function in proof

Conjecture generation:

Skolem constants from goal −→ universal x , x ′, . . .

metavariables from goal −→ existential y , y ′, . . .

conjecture:

∀
x
∀
x ′
. . . (P[x , x ′, . . .] =⇒ ∃

y
∃
y ′
. . .Q[x , x ′, . . . , y , y ′, . . .])

P[x , x ′, . . .]: from the assumptions containing only the Skolem
constants present in goal

Q[x , x ′, . . . , y , y ′, . . .]: from the goal
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Strategy: Cascading (function usage)

Using the generated functions F [x , x ′, . . .],F ′[x , x ′, . . .]:

new assumption:

∀
x
∀
x ′
. . . (P[x , x ′, . . .] =⇒ Q[x , x ′, . . . ,F [x , x ′, . . .],F ′[x , x ′, . . .], . . .])

use the new function symbols in the goal

contributes to automatic theory exploration
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Group multisets

The goal contains the equality: M[Y ∗] = M[t1] ⊎M[t2] ⊎ . . .

Proof flow: transform the union into M[t] (then Y ∗ = t)

Stepwise: groups pairs M[t1] ⊎M[t2]
(different groupings −→ proof alternatives)

For each pair, find the function F such that:

M[F [t1, t2]] = M[t1] ⊎M[t2]

Possibilities:

F is already known, the proof works by predicate logic;

induction can be applied (if F is the target function)

cascading is necessary for the synthesis of F
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Example: Group multisets and cascading

The goal is: IsSorted[Y ∗] ∧ M[Y ∗] = M[a0] ⊎M[R0] ⊎ . . .
The assumptions contain: IsSorted[R0]

Group pair: M[a0] ⊎M[R0]

Cascading: synthesize Insert from the conjecture:

∀
R
∀
a
∃
Y
(IsSorted[R] =⇒ (IsSorted[Y ] ∧M[Y ] = M[a] ⊎M[R]))

Add new assumption:

IsSorted[R] =⇒ (IsSorted[Insert[a,R]]∧M[Insert[a,R]] = M[a]⊎M[R])

Change goal to: IsSorted[Y ∗] ∧ M[Y ∗] = Insert[a0,R0] ⊎ . . .
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The extracted algorithm: set of conditional equalities

{Qk ⇒
(
F [X ] = Tk

)
}nk=1 (X is a pattern – cover set term)

Qk are formulae; Tk are terms (dependent on variables of the
pattern)

Insert-Sort: (cover set on Skolem constant)

∀
a,L,R

(
Sort[ε] = ε

Sort[⟨L, a,R⟩] = Insert[a,Sort[Concat[L,R]]]

)
Quick-Sort: (cover set on metavariable)

∀
a,L,R


Sort[ε] = ε

Sort[⟨L, a,R⟩] =
⟨ SmallerEq[a, Sort[Concat[L,R]],

a,
Bigger [a,Sort[Concat[L,R]]]] ⟩


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Proving in Theorema
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Generated Proof and Proof Tree in Theorema
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AlCons Demo

The automatically generated proof of the above conjecture, by
AlCons.

Basic properties used in the proof.

Highligthing the solutions obtained.

The extracted algorithm from the proof.

Proof animation
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Computation with the Extracted Algorithm
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Results

AlCons: a powerful system for proof–based algorithm
synthesis on lists and binary trees using multisets.

The proofs are generated in a few seconds and are easy to
understand.

The most important proof strategies are: use cover sets
together with multiset based Noetherian induction, pairing of
multisets, and cascading.

By using cover sets, no algorithm scheme and no concrete
induction principles are needed in advance, as they are
dynamically produced during the proof, and even nested
induction algorithms can be generated automatically.
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Isabela Drămnesc Introduction to the Theorema System 47 / 65



Introduction to the system
Algorithm synthesis

Algorithm verification
Conclusions

Verification of algorithms in Theorema

Outline

Problem and approach

Implementation overview: some special rules

Results
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Problem and Method

Problem: Given an algorithm, prove that the algorithm is correct
(including the verification of auxiliary algorithms).
Specification: the output is sorted and preserves the multiset.

−→ two logical conjectures
Proofs:

Automatically generated by the Theorema prover:
success: proof −→ the correctness of the algorithm
failure: “cascading” (generates further conjectures for
verification of auxiliary functions)

Script in Coq

Case study

Verification of: Bubble–Sort, Insert–Sort, Merge–Sort,
Quick–Sort, Patience–Sort, Min–Sort, Max–Sort,
Min–Max–Sort on lists, by using the Theorema and Coq
systems.
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Motivation

Algorithm certification or program verification have an
increasing importance in the current technological landscape, due
to the sharp increase in the complexity of software (adverse effects
in case of failure)

for instance robots constitute a particular class of systems
that can present high risks of software failures.

Sorting has a growing area of applications,

in particular the ones where organizing huge data collections
is critical, as for instance in environmental applications.

Compare the characteristics and the performance of Theorema
and Coq.
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The logical conjecture in Theorema

Conjecture

∀
X

(
IsSorted[Sort[X ]] ∧M[X ] = M[Sort[X ]]

)

The conjecture is split in two;

The proofs in Theorema are automatically generated by our
prover which uses:

some special inference rules;
definitions and additional lemmas in the knowledge base.
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Implementation Overview

The prover: a collection of rewrite rules corresponding to
inferences.

A proof situation (assumptions, goal)
rule−→ new proof situation

Alternatives: an AND-OR proof tree is created,

Some of the alternatives may fail – the termination is ensured
by the Theorema mechanism for controlling the depth of the
proof tree.
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Implementation Overview

The Theorema–based prover uses the the methods:

Classical propositional and first order inferences similar to the
ones from sequent calculus.

Generalized Noetherian induction that finds inductive
hypotheses automatically.

Domain specific methods for the types handled by the prover
(multisets, lists).

These methods are implemented as:

Inference rules: describe how to change the proof status in
one proof step.

Strategies: describe how to combine several inference rules.
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R1. Generalized induction

Uses the Noetherian induction based on the well–founded
ordering between lists;

Checked syntactically by a meta–relation between terms
induced by the strict inclusion of the multisets of the terms
(U < V is determined by M[U] ⊂ M[V ]).

When needed, this rule applies to introduce a novel induction
hypothesis with a smaller list.

Example: the main goal is IsSorted[Insert[a0, b0 ⌣ U0]], then
IsSorted[Insert[a0,U0]] is assumed,
because U0 is smaller than b0 ⌣ U0.
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R2. Cascading

When a goal cannot be proved, a new conjecture is generated
from the current goal and by using only the assumptions that
are needed (the ones which contain the Skolem constants
occurring in the goal);

The conjecture is of the form ∀
X ,Y

A[X ,Y ] =⇒ G [X ,Y ]

where

X ,Y are the Skolem contants from the current goal,
A is composed from the needed assumptions, and
G is the current goal;

A new proof attempt starts, and typically, the novel generated
conjecture corresponds to the verification of auxiliary
functions used in the sorting algorithms.
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R3. Preserving multisets

This rule is based on the following principle: the formula

E1[x1, x2, ...,X1,X2, ...] ≤ E2[y1, y2, ...,Y1,Y2, ...],

where only ⌣, Insert, and Merge occur in the expressions E1 and
E2, can be transformed into:

x1 ≤ y1, y2, . . .Y1,Y2, . . . ∧ x2 ≤ y1, y2, . . .Y1,Y2, . . . ∧ . . .

∧X1 ≤ y1, y2, . . .Y1,Y2, . . . ∧ X2 ≤ y1, y2, . . .Y1,Y2, . . . ∧ . . .

(Each argument of E1 is smaller than each argument of E2.)
Example: A goal (or an assumption) of the form

Insert[a,T ] ≤ Merge[U, b ⌣ V ]

is transformed into

a ≤ U ∧ a ≤ b ∧ a ≤ V ∧ T ≤ U ∧ T ≤ b ∧ T ≤ V .
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The algorithms

Insert–Sort

Merge–Sort

Bubble–Sort

Quick–Sort

Patience–Sort

Min–Sort

Max–Sort

Min–Max–Sort

Example: Min–Max–Sort returns the sorted version of the input
list. It places the minimum of the input list at the beginning of the
output and the maximum at the end of the it, and then applies
recursively to the list of the remaining elements, selected by the
function TrimMM.
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Algorithm
∀

a,b,U

a≤b

(TrimMM[a ⌣ (b ⌣ U)] = TrimMmA[a, b,U])

∀
a,b,U

b<a

(TrimMM[a ⌣ (b ⌣ U)] = TrimMmA[b, a,U])


Algorithm

∀
a,b

(TrimMmA[a, b, ⟨⟩] = ⟨⟩)

∀
a,b,c,U
c<a

(TrimMmA[a, b, c ⌣ U] = a ⌣ TrimMmA[c , b,U])

∀
a,b,c,U

(a≤c∧c≤b)

(TrimMmA[a, b, c ⌣ U] = c ⌣ TrimMmA[a, b,U])

∀
a,b,c,U

b<c

(TrimMmA[a, b, c ⌣ U] = b ⌣ TrimMmA[a, c ,U])


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Computation with the Algorithms
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Proving in Theorema
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Generated Proof and Proof Tree in Theorema
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Results

A Theorema prover for proof–based algorithm synthesis and
verification on lists using multisets.

This case study

shows that, even though the algorithms are very well–known,
proving the correctness is not trivial;

the use of multisets is very important as it allows to express
more easily the fact that two lists have the same elements;

the techniques used lead to more efficient proofs, and simplify
the proving process → in Theorema the proofs are generated
in a few seconds and are easy to understand.
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Theorema is a very nice automated theorem prover that can be
used for both

Teaching:

Automated Theorem Proving,
Algorithm Synthesis and Mathematical Theory Exploration.

Research: algorithm synthesis and verification.

Ongoing and future work1

Verify robotic algorithms in Theorema (e.g. Dijkstra, A*, ...)

Increase the automation of proving and of finding necessary
lemmata in Theorema

1Acknowledgements: This work is co-funded by the European Union through
the Erasmus+ project AiRobo: Artificial Intelligence-based Robotics,
2023-1-RO01-KA220-HED-000152418, https://airobo.info.uvt.ro
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Thank you for your attention!
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