Introduction to the Theorema system

Isabela Dramnesc

Computer Science Department
West University of Timisoara
Romania

FROM 2024
17 September
Timisoara, Romania

Isabela Dramnesc Introduction to the Theorema System 1/65

@ Introduction to the system

© Algorithm synthesis

© Algorithm verification

@ Conclusions

Isabela Dramnesc Introduction to the Theorema System 2/65

Introduction to the system

The Theorema system

Web page:
www.risc.jku.at/theorema

@ Conceived and initiated around 1995 by Bruno Buchberger
and reflects his view of “doing mathematics”.

Theorema 2.0 is a major re-launch

e Mainly developed by Wolfgang Windsteiger.
Implementation: Mathematica

@ Proving uses only the rewrite mechanism of Mathematica.
Supports:

@ Development of mathematical theories in natural style.

@ Proving in natural style.

@ Definition and execution of algorithms.

@ Construction of provers for various domains.

Isabela Dramnesc Introduction to the Theorema System 3/65

www.risc.jku.at/theorema

Introduction to the system

Installation

Home page:
www.risc.jku.at/research/theorema/software

User mode
@ Mathematica software needed

@ Download the Theorema package and copy it in the
Mathematica folder

Developer mode
@ Needed: Mathematica, Eclipse, JDK, Workbench
@ Download the Theorema package and include it in Eclipse

@ Installation guide here.

Isabela Dramnesc Introduction to the Theorema System 4/65

www.risc.jku.at/research/theorema/software
https://drive.google.com/drive/folders/1WrEUPDH2eb8J1LDcR1CRmaePn1Xaw-bV

Introduction to the system

Loading Theorema in user mode

PREPARE
I
PROVE
— o
Needs ["Theorema™"] 1 SOLVE Defion Theorem Lemma Proposiion
Covollary ~ Algorithm Example 2
Shitt + Enter (for FORMULAS
evaluating the coll INFORM New Group /Ungroup Quote / Unquote

(a) Needs Theorema

nf1}= Needs ["

Original Concept by Developed by the
Bruno Buchberger Theorema Group

Memory consumed by Mathemstics: 1649 M8

la Drdmnesc Introduction to the Theorema System

Introduction to the system

Create a new notebook

m Definttion

Corollary

Theorem

Algorithm

Group / Ungroup

Lomma Proposttion

Example

Quote / Unquote

Introduction to the system

Proving

= e

[o Lo
Simple proving otnson

Gorollary

PROPOSITION (...) Group [Ungroup | | Quoe / Unquate.

Isabela Dramnesc ion to the Theorema System 7/65

Introduction to the system

Proving

LN] demo.nb 150% v
compose [inspect [archives
PREPARE

Simple proving = e ™

SOLVE | Defnton | Thoorom Lemma Propostion
Generate automatically in the Theorema system, using different provers, the Corollary Agorithm Example 7
proofs of the following formulae:
INFORM New Group / Ungroup Quote/ Unauote

1.

(P=2Q) = ((~Q = (=P))

We write the corresponding Proposition in Theorema using the templates in the

Commander. vk. ak. k. i
PROPOSITION (....) x vl 38
[]
L Ne
Click inside the box and choose the template from Theorema Commander ; ; .- I':‘
—

Momory consumed by Mathenatica: 1227 M8

ela Dramnesc on to the Theorema System / 65

Introduction to the system

Proving

@ Mathematica File Edit Insert Format Cell Graphics

VF y=x df$ () st 20 30

Mathematical Constants.

Random Functions

demo.nb

Classroom Assistant

. ple provin! i

Evaluation | Palettes | Window Help

a
Basic Math Assistant

Classic Slide Show PROVE
| compure |

Chart Element Schemes

Special Characters

v ‘e Theorema system, using e’ > | neorw |

nlel i || ¢ ° [Mre y

Numeric Functions
Abs | Celing | Round

W § | Aoor | More
Elementary Functions

o Log 10" Log10
Smh | Cosh | Tanh | More
Trigonometric Functions

sn | cos | Tan | cat
Arcsin | ArcCos | ArcTan |more v
Integer Functions

Divisors Factarial
oo | Lcm | prme [More

B (~P))

Randominteger | RandomChoice
RandomReal | More
Typesetting

P wf x e G

nfulf~fafvivial.
clelefafviof.|=«|=

Al Special Symbols and Characters

~Q) > (- P

’roposition in Theorema using the templates in the

Code Formatting

Generate Notebook from Palette
Install Palette...

X

»h X

Isabela Dramnesc

Introduction to the Theorema System

Introduction to the system

Proving

Simple proving

Generate automatically in the Theorema system, using different provers, the
proofs of the following formulae:

1.
| P20 == -p)

We write the corresponding Proposition in Theorema using the templates in the
Commander.

PROPOSITION (...) X

P=2Q) = ((~Q = (-P [...]
L]

ela Dramnesc

n to the Theorema System

= e

Defintion Theorem Lomma Proposiion

Gorotlary Agorthm Example

Group / Ungroup | Quote / Unauate.

Copy

Paste

Copy As >
Evaluate Cell

Analyze Cell

Convert To >

V Initialization Cell
Add/Remove Cell Ta

Style >
Background Color >
Size >
Clear Formatting

Save Selection As...

Introduction to the system

Proving

demo.nb

Simple proving

Generate automatically in the Theorema system, using different provers, the
proofs of the following formulae:

Dofinion Thoorom Lomma Propostion

Gorollary Agorthm Example

Group / Ungrovp Quate / Unquote

1

| Psw=(-a=-p)]

We write the corresponding Proposition in Theorema using the templates in the
Commander.

PROPOSITION (P1) B

P>Q =

Evaluate the cell

Isabela Dramnesc ion to the Theorema System 11 /65

Introduction to the system

Proving

demo.nb 150% v

Simple proving e

Generate automatically in the Theorema system, using different provers, the
proofs of the following formulae:

1.
|(P=Q)=(-‘Q=~P)]
We write the corresponding Proposition in Theorema using the templates in the
Commander.
PRrOPOSITION (P1) X
Inf2)i= P>Q = -Q = -P »h X }
[}

ion to the Theorema System

Isabela Dramnesc

Introduction to the system

Options to choose from

(K] demo.nb

Simple proving

Generate automatically in the Theorema system, using different provers, the
proofs of the following formulae:

1.

(P=2Q) = (-Q = -P)
We write the corresponding Proposition in Theorema using the templates in the

Commander.

150% v

PROPOSITION (P1)

nie)= P=Q = ((~Q) = (~P

ela Dramnesc

| comPuTE

o[oo o]

Restore cefauts

Choose a prover

Fitorod oy
Q Basic Theorema Language Rules
% Rules for Proof Termination

Quantifier Rules

Rules for Logieal Connectives
Rules for Equality

Rules based on Rewriting
Special Arithmetic

10 @ Prove by contradiction

13/65

Introduction to the system

Prove submit

Simple proving

Generate automatically in the Theorema system, using different provers, the
proofs of the following formulae:

P1)

P2Q > 7Q=-
0 knowledge sclected

»

Arithmetic

+ Equal
Plus,Minus, Times,Multinverse,Power,
| P = (-0 = -P) T e e
GreaterEqual Abs Value,Sur
We write the corresponding Proposition in Theorema using the templates in the Logic i
Commander. + Not, And,Or, Implies, Iff, Nand, Nor, Xor, Xnor, Equal
Forall,Exists, Let, Componentwise,Such,SuchUnique
Domains
ProposiTION (P1) X
Inf2):= P=2Q) = ((-Q = (-P (ph X

1) The proof goal is True
1)# Knowledge base contains a formula False

2) # Tnequality rules.

2)# Knowledge base contains two contradicting universally

la Drdmnesc

14 /65

Introduction to the system

The proof and the proof tree

1.

Proof Simplification
(P=Q) = ((~Q = (~P)})

We write the corresponding Propositior

We prove:

(P2Q = ((Q=(-P)

Commander. with no assumptions.
~ Wehave several alternatives to continue the proof.
PROPOSITION (P1) 9 Alternative 1:
In order to prove (1) we assume
Inf2)= P=Q) = ((~Q

P=q
and then prove
Q=P

@ Proof of (p1) #1: Show proof We have several alternatives to continue the proof.
@ Alternative 1:

In order to prove G#1) we assume

-
and then prove

<P,

We have several alternatives to continue the proof.

2 Alternative 1:)

Memory consumed by Mathematica: 126.4 M3

ela Dramnesc

n to the Theorema System

Introduction to the system

Simplify the proof

ece # Theorema Proof 125% v

Proof Simplification
Eliminate failing/pending branches
Eliminate superfluous steps
Eliminate unused formulae
Display with new settings
We prove:
(P=2Q) = ((-Q = (-P) on
with no assumptions.
We have several alternatives to continue the proof.
© Alternative 1:
In order to prove (pl) we assume
P=Q A#D)
and then prove
Q= (=P). G#1)

We have several alternatives to continue the proof.

emory consumed by iathemaics: 126.4 M8

© Alternative 1:

In order to prove G#1) we assume

ela Drdmnesc n to the Theorema System 16 / 65

Introduction to the system

Both simplified and full proof

>. [] demo.nb — m
. . e o]
Simple proving

Corollary Agorthm Examplo 2

Generate automatically in the Theorema system, using different provers, the
proofs of the following formulae:

Group / Ungroup Quole ! Unquote

1.
| Pw=(-a = -p)

We write the corresponding Proposition in Theorema using the templates in the
Commander.

PROPOSITION (P1)

In[2]:= P=2Q = ((~Q = (-P ®h X
o Proof of (p1) #1: Show simplified proof Show full proof X

knowledge built—in prover Restore settings

ion to the Theorema System 17 /65

Isabela Dramnesc

Introduction to the system

The simplified proof

XK # Theorema Proof 125% v
o e
> Proof Simplification Time spent for simplifying the proof: 0.000987s = =
We prove:
(P=2Q) = ((-Q=(-P) @b
with no assumptions.
In order to prove (p1) we assume
P=Q (A%,
and then prove
-Q=(-P). G#1)
In order to prove G#1) we assume
-Q A#3)
and then prove
- P. G
We augment the knowledge base:
From (a#3), using (A#0), we can deduce

- P. (A10)

The goal G#4) is identical to formula a#10) in the knowledge base. Thus, this part of the
proofis finished.

ela Drimnesc 18 /65

Introduction to the system

Exercises (proving)

Exercises. Consider the following formulae:
L. P=Q) = (Q@=P)
2. PV (P=Q)
3. (P=QAN(Q@=R)= ((PNQ)=R)
L (@=P)N(Q=R)= (PVQ)=R)
For each of these formulae:

(a) following the examples shown, generate both the full proof and the simplified proofs
in the Theorema system;

(b) generate in Theorema different proofs by choosing different provers, different infer-
ence rules to be applied, change the search depth, change the search time;

Isabela Dramnesc Introduction to the Theorema System 19 /65

Introduction to the system

Theory exploration

Exploration of LISTS theory in Theorema.nb

PREPARE

. o NoTEBOOKS
Lists Theory Exploration B | o~
COMPUTE ENVIRONMENTS
() is the empty list, a~U (a is the first element in the list, U is the tail) SOLVE Definition Theorem Lemma Proposition
Corollary Algorithm Example 2
F
FIRST ELEMENT oS
INFORM Now Group /Ungrowp Quote / Unquote
DEFINITION (FIRST ELEMENT) x = = - m-
In[181):= v, FirstEl[a-U] :=a Arst._elemy X it L _Ld __Ed
a,
‘l ‘l e (l =
- A v -
Ves 38E VEE 38
The TAIL of a list
o
DEFINITION (TAIL OF A LIST) X -
GLosais
New
Inft62)= v Tailof[a-U] %
v v v - et
" " -
[]

Isabela Dramnesc on to the Theorema System 20 /65

Introduction to the system

Compute with definitions

eoe Exploration of LISTS theory in Theorema.nb 125% v

new | knowledge | built-in | setup

INSERT
PROVE
This function inserts an element in a sorted list such that the result remains sorted. —
COMPUTE
SOLVE
DEFINITION (INSERT) B
In[219)= v Insert[a, (3] :=a-(} Ginsert =1) X
INFORM
Inf220)= v Insert[a, b-U] :=a~ (b-U)
a,b,u
asb
In221]:= a,:,u Insert[a, b-U] :=b-Insert[a, U] E—
b<a
u

ela Drdmnesc n to the Theorema System 21 /65

Introduction to the system

Select KB

° Exploration of LISTS theory in Theorema.nb

INSERT

This function inserts an element in a sorted list such that the result remains sorted.

DEFINITION (INSERT)
ni262) v Insert[a, ()] :
ness= | v (Insert(a, b-U]
asb
In(264)= Y, Insert(a, b-U] :=b-Insert(a, U]
bea

Insert([7, 2~ (3-(6-(8-(10-()))))]

PREPARE
PROVE
COMPUTE
SOLVE
E
INFORM
[]

new | knowledge | buil

in [setup

FXORMION (1)
Property P12
ProvosiTioN (P12)
Length of a list
DEFINITION (LENGTH OF A L1ST)
Searching an element in a list

DEFINITION (SEARCH ELEM IN LIST)

ALGORITHM (MAXA)

ALGORITHM (MAXIMUM OF A LIST)

ALGoRTiM (TRIMMA)

Avcorr (TR

ALGORITHM (MAXSORT)
19
20

INSERT SORT

INSERT
'DEFINITION (INSERT)
insert-1
insert-2
insert-3

INSERT-SORT
ALGORITHM (INSERT-SORT)

OK, next

n to the Theorema System 22 /65

Introduction to the system

Compute Insert

Exploration of LISTS theory in Theorema.nb 150% v

new | knowledge | bui

in | setup

PREPARE Tq,ce CompuTATION

INSERT PROVE Trace user—definitions
. . : i N Compue DEMO Mooe
This function inserts an element in a sorted list such that the result remains sorted. . 5
Sl Restore settings before each computation
DEFINITION (INSERT) B
INFORM
In[262]:= v Insert[a, ()] i=a~-() (insert—1) X
In[263]:= a’:'" Insert[a, b-U] :=a~- (b-U) [E——
asb
In[264):= v Insert[a, b-U] :=
a,b,0
e (insert-3) X

b - Insert[a, U]

L]

In[269]:= Insert[7, 2- (3~ (6~ (8-(10-()))))]]

oupesl= | 2- (3~ 6~ 7- (8- (10-() j
Show computation X

Kknowledge built-in Computation Restore settings

n to the Theorema System 23 /65

ela Dramnesc

Introduction to the system

Show computation steps

INSERT

This function inserts an element in a so

DEFINITION (INSERT)

In[262]:= v Insert[a, ()
a

In[263]:= v Insert[a,

ash
In[264]:= v Insert[a,

a,b,

b<a
b - Insert[a,
In[269]:= Insert[7, 2- (3- (6~ |

Out263]= 2-(3-(6-(7-(8-(H4
Show computation

#| Theorema Comput:

(8-(10-)N1
6-@-10-0N)]

Insert(7,

T Insert[7,2
%
x7<2

False
T Insert[7, 2~ (3~ (6~ 8~ (10- ()]

True
T (insert-3) 2~ Insert[7, 3~ (6~ (8~ (10~ ()]
T Insert[7,3~(6~(8 - (10~ ()]
o
x 7=3

False
T Insert[7,3- (6~ (8~ (10~)]

v 3<T
True
T (insert-3) 3~ Insert[7, 6-(8 - (10~ ()]
T Insert(7, 6~ (8 - (10~ ()]
v
x7<6
False
T Insert[7, 6~ (8 - (10~ ()]
v6<7
True
T (insert-3) 6 -Insert[7, 8- (10- ()]
T Insert(7, $ - (10~ ()]

v71=8
True
T insert-2) 7~ @~ (10~())
= 7-(8-(10-()
= 6-(7-@E-10-0)
= 3-(6-(7-(8~(10-0))
=2-(3~(6~-7-@-10-0N)

ela Dramnesc

PREPARE

PROVE
COMPUTE
SOLVE

INFORM

n to the Theorema System

new | knowledge [built-in [setup

TrACE COMPUTATION
Trace uscr-definitions
Demo Mope
Restore settings before each con

24 /65

Introduction to the system

Compute with predicate definitions

Exploration of LISTS theory in Theorema.nb 126% v

new | knowledge [built-in [setup

PREPARE
Here, because we define a predicate, one has two definitions : one for Compute and one for Prove. TraCE COMPUTATION

e PROVE Trace user-definitions
Definition for Compute
CompuTE DEMO Mooe
o Restore settings before each computation
DEFINITION (OCCURS IN- FOR COMPUTE) x
n(230) v a4 () :=False oy o4
INFORM
231 Y, ad(a-X) i=True (occurs x
232 vV aa(b-X) :maaX
a,6,% (occurs x
arb
]
Inf270]: aa(a-())
ouferol | True
wery= | @< Q)

14(1-(2-0))

True

‘ 1a(2-(2-(2-(2-(2-@2-@2-ONNN

False
e |14 @@= @@= @@= @0]
oxns. IR i

on to the Theorema System 25/65

la Drdmnesc

Introduction to the system

Compute with predicate definitions

Exploration of LISTS theory in Theorema.nb

Here, because we define a predicate, one has two definitions : one for Compute and one for Prove. PREPARE 1,ce CompuTATION

Trace user—definitions
Demo Mooe

Definition for Compute
Restore settings before each computation

DEFINITION (OCCURS IN- FOR COMPUTE) x
Weoj= |V @) i= False x
Inf231)= Y, a<(a-X) i=True x
e ¥ @ (boX) rmadX o

asb
[
Definition used in proving
DEFINITION (OCCURS IN) x
vz (¥ (@< Q) x
Ini234]= v,ad(@-x x
s Y ae(beX) =aaX =
arb
]

on to the Theorema System 26 /65

la Drdmnesc

Introduction to the system

References

[1] Isabela Dramnesc, Erika Abrahém, Tudor Jebelean, Gabor Kusper, and Sorin Stratulat.
Experiments with Automated Reasoning in the Class. In Proc. of the 15th
International Conference on Intelligent Computer Mathematics (CICM'22), volume 13467
of LNCS, pages 287-304. Springer, 2022, Thilisi, Georgia.

[2] Isabela Dramnesc, Erika Abrahém, Tudor Jebelean, Gdbor Kusper, Sorin Stratulat,
ARC: An Educational Project on Automated Reasoning in the Class In Proceedings
of EdMedia+ Innovate Learning 2022, pages 934-943, 2022, New York City, USA, AACE.

[3] Isabela Dramnesc, Erika Abraham, Tudor Jebelean, Gabor Kusper, Sorin Stratulat,
Automated Reasoning in the Class, Journal of Computer Algebra Rundbrief, Nr. 71,
pages 21-26, 2022.

[4] Isabela Drdmnesc, Tudor Jebelean, Erika Abrahém, Sorin Stratulat, Gabor Kusper,
Mircea Marin, Adrian Craciun, Csaba Bird, Gergely Kovésznai, Nikolaj Popov,
Computational Logic: A Practical Approach. Editura Universitatii de Vest, 2022.

Acknowledgements: This work was co-funded by the European Union, Erasmus+ project
ARC: Automated Reasoning in the Class, 2019-1-RO01-KA203-063943, 2019 - 2022,
www.arc.info.uvt.ro

Isabela Dramnesc Introduction to the Theorema System 27 /65

www.arc.info.uvt.ro

Algorithm synthesis

AlCons: A Prover for Deductive Synthesis of Sorting
Algorithms in Theorema

Outline
@ Problem and approach

@ AlCons implementation overview
@ Demo in Theorema

e Algorithm generation on binary trees
o Compute with the extracted algorithm

Isabela Dramnesc Introduction to the Theorema System 28 /65

Algorithm synthesis

Algorithm synthesis

Starting from a specification of a problem

@ find an algorithm which satisfies the specification
including auxiliary algorithms (subroutines)

Synthesis by proving:

@ specification — conjecture
@ prove

@ proof — algorithm

Main goal:

@ Design methods, inference rules and strategies for
constructing proofs (efficient, natural style)
and for synthesizing auxiliary functions.

Isabela Dramnesc Introduction to the Theorema System 29 /65

Algorithm synthesis

Motivation

Investigate the effect of different proof techniques
— synthesize different algorithms.

Study the structure of natural style proving.

Explore the appropriate theories (by adding properties and
functions to the knowledge base during proof attempts).

Find efficient proof strategies and inference rules appropriate to
the domains of lists, binary trees, and multisets.

Use multisets to express naturally the fact that two lists/trees
have the same elements and to guide the synthesis proof.

Isabela Dramnesc Introduction to the Theorema System 30/ 65

Algorithm synthesis

Problem and Method

Problem: Given a specification, find a correct algorithm.
Specification: Input condition (/), output condition (O).
Synthesis conjectures:

@ Unary functions: ;(I[X] = éO[X, Y)).
@ Binary functions: iy(l[X, Y] = gO[X, Y, Z]).

Proofs:
@ Automatically generated by AlCons:

@ success: proof —» algorithm
o failure: “cascading” (generates further synthesis conjectures
for synthesis of auxiliary functions)

Algorithm extraction:
@ One or more algorithms from one proof.

Case studies: Sorting of lists and binary trees.

Isabela Dramnesc Introduction to the Theorema System 31/65

Algorithm synthesis

Elements: a,b,c
total order: a< b, a<b

Lists: U,V, W, X, Y
inductive domain: (), a~ U
extended order: a< U, a< U, U<a, U<a, U<V, ULV

Binary trees: L,R,S, T, X,Y,Z
inductive domain: ¢, (L, a, R)
extended order: a< L, a<L, L<a, L<a, L<R, LR

Multisets:

M[OI =0 Mgl =0
Mla~ V] = {{a}} w M[V] | M[{L, 3, R)] = M[L] ¥ {{a}} & M[R]

Isabela Dramnesc Introduction to the Theorema System 32/65

Algorithm synthesis

AlCons: Implementation Overview

The prover: a collection of rewrite rules corresponding to
inferences (called proof steps).
o 1 o
@ a proof situation (assm, goal) =5 new proof situation
o Alternatives: an AND-OR proof tree is created,

@ In contrast to the usual behavior of Theorema provers,
AlCons follows all alternatives — may lead to different
algorithms.

@ Some of the alternatives may also fail — the termination is
ensured by the Theorema mechanism for controlling the
depth of the proof tree.

Isabela Dramnesc Introduction to the Theorema System 33/65

Algorithm synthesis

Implementation Overview

AlCons is a first order prover based on the methods:
@ Classical propositional and first order inferences similar to the
ones from sequent calculus.
o Cover set induction applied both to universal and to
existential goals.

@ Domain specific methods for the types handled by the prover
(multisets, lists, and binary trees).

These methods are implemented as:

@ Inference rules: describe how to change the proof status in
one proof step.

o Strategies: describe how to combine several inference rules.

Isabela Dramnesc Introduction to the Theorema System 34 /65

Algorithm synthesis

Cover Set: Set of terms covering the domain.

Each element of the domain instantiates exactly one cover term.
For binary trees: {e,(L,a,R)} (L,a, R: variables).
Target goal: Y3P[X, Y] Skolgn JPXo, Y] M PIX, Y]
Xo: target constant, Y*: target metavariable
On Skolem constants: Prove Ple, Y*] and P[(Lo, a0, Ro), Y]
e may use P[Lg, F[Lo]] and P[Lo, F[Ro]] (F: synth. funct.)
@ determines the decomposition of the input
On metavariables:
Prove P[Xo, €] and P[Xo, (L*, a*, R*)]
e may replace L* by F[L]] and R* by F[R{]
@ determines the structure of the output
In a nested way on the new Skolem constants and metavariables
— Algorithms with nested recursion, and with recursion on
several arguments

Isabela Dramnesc Introduction to the Theorema System 35 /65

Algorithm synthesis

Dynamic induction

Dynamically generates new induction hypotheses during the proof.
Noetherian induction based on the well-founded ordering:

L=< R is M[L] c M[R]
Checked syntactically at meta—level: meta—relation between terms
induced by the strict inclusion of the multisets of symbols

e Example: (Lo, ap, R*) < (Lo, ao, (R*, by, S*))
Usage:
@ ground term t < Xp (target constant):
add P[t, Sort[t]] to assumptions.

@ metavariable L* < Y* (target metavariable):
replace in goal L* by F[L*] (target function applied to a new
metavariable)

Isabela Dramnesc Introduction to the Theorema System 36 /65

Algorithm synthesis

Strategy: Cascading (conjecture generation)

Synthesizing auxiliary functions:
@ generate conjecture
@ prove conjecture — algorithm
@ use auxiliary function in proof
Conjecture generation:
@ Skolem constants from goal — universal x,x/, ...
@ metavariables from goal — existential y,y’, ...

@ conjecture:

Yj...(P[X,X',...]:>}E/I;!...Q[x,x’,...,y,y/,...])

P[x,x’,...]: from the assumptions containing only the Skolem
constants present in goal

o Q[x,x',...,y,y,...]: from the goal

Isabela Dramnesc Introduction to the Theorema System 37/65

Algorithm synthesis

Strategy: Cascading (function usage)

Using the generated functions F[x,x’,...], F'[x,x,...]:

@ new assumption:

VV/...(P[X,X’,...] = QIx, X, ..., F[x,x',...],F[x,x,...],...])

@ use the new function symbols in the goal

@ contributes to automatic theory exploration

Isabela Dramnesc Introduction to the Theorema System 38 /65

Algorithm synthesis

Group multisets

The goal contains the equality: M[Y*] = M[t1]W M[t] W ...
Proof flow: transform the union into M[t] (then Y* = t)

Stepwise: groups pairs M(t1] W M|t,]
(different groupings — proof alternatives)

For each pair, find the function F such that:
M([F[t1, &2]] = M[t1] & M(t,]

Possibilities:
@ F is already known, the proof works by predicate logic;
e induction can be applied (if F is the target function)

@ cascading is necessary for the synthesis of F

Isabela Dramnesc Introduction to the Theorema System 39 /65

Algorithm synthesis

Example: Group multisets and cascading

The goal is: IsSorted[Y*] A M[Y*] = M[aog] ¥ M[Ro] W ...
The assumptions contain: IsSorted[Ro]

Group pair: Mlag] & M[Ro]

Cascading: synthesize Insert from the conjecture:

XY\EI/(ISSOrted[R] = (IsSorted[Y] AN M[Y] = M[a] ¥ M[R]))

Add new assumption:

IsSorted[R] = (IsSorted|Insert]a, R]|A\M[Insert[a, R]] = M[a]&M][R])

Change goal to: IsSorted[Y*] N M[Y*] = Insert[ag, Ro] & . ..

Isabela Dramnesc Introduction to the Theorema System 40 /65

Algorithm synthesis

The extracted algorithm: set of conditional equalities
o {Qu= (F[X] = Tx)}7_; (X is a pattern — cover set term)
@ Qx are formulae; Ty are terms (dependent on variables of the
pattern)

Insert-Sort: (cover set on Skolem constant)

v Sortle] = ¢
aL,R \ Sort[(L,a, R)] = Insert|a, Sort|Concat[L, R]]]

Quick-Sort: (cover set on metavariable)
Sortle] =&
Sort[(L,a, R)] =
BYR (SmallerEq|a, Sort[Concat[L, R]],
” a

Bigger|a, Sort[’Concat[L, RIM)

Isabela Dramnesc Introduction to the Theorema System 41 /65

Algorithm synthesis

Proving in Theorema

Theorem Commander

]
st s over i s A

oK. next
Proor R
Tuple Prowr -
(INSERT-FUNC Restoredeauts [Show all
Fiered by
v IsSorted[X] =
Y [FiFoRMY| ~ D Tuple Prover
v ((M[Insert[a, X]] = Pt - Initialization
. x a5 Propositonsl
({a}) YMIX] A ~Ees Quntiters

IsSorted[Insert(a, X]]) @5 - Skolemize the universal goal

€5 - Introduce meta-variables in the existential

(] ~ gy Simplity
— D't~ Simplify goal by one rule
PROPOSITION (INSERT-FUNCTION) x 91 ~| Simplify goal by several rules
D1~ Solve metavariable from single multiset cqu
v IsSorted[X] = 91~/ Solve metavariable from multset equality
* x ©és 1~ Solve target function from single multiset ¢
M M[Insert[a, X]] = {{a}} UMI[X] P 1~ Solve target function from multiset equality
~ s Tnduction
u @1~ Usea cover set from the alternatives
9’5 ~| Apply altematively several cover sets to Sk
D 10~ Generate altemative pairings of multiset te
)t/ 100~ Fail: end proof
PROPOSITION (INSERT) L v [J3 Options
150% o | s

n to the Theorema System 42 /65

Algorithm synthesis

Generated Proof and Proof Tree in Theorema

[E3 theorema Proof - Wolfam Mathematia 1.3

g0 knoweage | b pover | vt o [N

Fie Edt Insert Format Cel Graphics Evslustion Palettes Window _Help

v Proof Simplification
B GO g U G R T .| PROVE
TSorted Insert 37, L0] | ATsSorted (RO) A (Insert a7 20) A (a [COREITE
SOLVE &
Using "A#227.4", the goal Geson) is simplified to A
A
Tasorted|Tnsert 77, L0] | ATsSorted[RO) A (Tnsert a7, y ’ A
v
Using "A#227.2", the goal Gess2) is simplified to: INFORM v A
s d [1 7, L0|| A (x 1 x o A
sSorted Insert [, (znser (a7, a ’ x ra
A A
Using "insert-less-elem-mg?, the goal Geso3 i simplified to: e A
Isorted tnsert a7, L0] | A (3 5 20) A (L0 < a0) ’ A A
A A
Using "A#227.3", the goal G594 is simplified to: A v
ALK x A A
TsSorted Insert 37, L0) < A v v v v
A AN B KA & p &
The conjunction as4ss) is splitinto: A A A A A
A A A A
([nsert A A A A
A A A A
IsSorted[Insert A A A A
ing " " . A t A t
Using "A#448.2", the goal (Ge595)is simplified to: A A
The goal is used as a condition in the following clause of the algorithm:
Insert
Abon proct
Success. v |

n to the Theorema System 43 /65

Algorithm synthesis

AlCons Demo

@ The automatically generated proof of the above conjecture, by
AlCons.

@ Basic properties used in the proof.
@ Highligthing the solutions obtained.

@ The extracted algorithm from the proof.

Proof animation

Isabela Dramnesc Introduction to the Theorema System 44 /65

Proof-Animation.mp4

Algorithm synthesis

Computation with the Extracted Algorithm

The extracted algorithm is:
Fillred by Srowail

Algorithm (Insert an element in a tree) x o

e ¥ Tnsertla, el ix (e, a, ©) - A At v et .)

=}
np3L= v Insert[a, (L, b, R)] := (Insert[a, L], b, R) . =]
anbL x =
asp
[o et

v Insertla, (L, b, R)] := (L, b, Insert[a, R]) B

a,b,L,R Di x

b

L]

- | Tnsert(s, e
ouse | <er 3, €
v | Insert(3, e, 5, 31
ous | (Ces 3,000 5, ¢
wme | Tnsezt(s, e, 3, &), 5, 1
oum €, 3, €, 3, €, 5, ¢
- | Insert[10, ((e, 3, &), 5, (e, 7, (=, 10,)]
Outjg}= € 1 €)s 5, (&, Ty £, 10, €), 10, ¢
- | Insertr2, (e, 3, €), 5, ¢e, 7, &, 10, £)))]
Outj9}= €, 2,€), 3, €), 5, (g, 7, (£, 10, €
n[10):= Insert[22, ((e, 3, €), 5, (e, 7, (g, 10, €)))] 100%
Outj10}= €, 3, €), 5, (g, 7, (&, 10, (&, 22, & Show all

Isabela Dramnesc on to the Theorema System

Algorithm synthesis

Results

@ AlCons: a powerful system for proof-based algorithm
synthesis on lists and binary trees using multisets.

@ The proofs are generated in a few seconds and are easy to
understand.

@ The most important proof strategies are: use cover sets
together with multiset based Noetherian induction, pairing of
multisets, and cascading.

@ By using cover sets, no algorithm scheme and no concrete
induction principles are needed in advance, as they are
dynamically produced during the proof, and even nested
induction algorithms can be generated automatically.

Isabela Dramnesc Introduction to the Theorema System 46 /65

Algorithm synthesis

References

[5] Isabela Dramnesc and Tudor Jebelean. Synthesis of list algorithms by
mechanical proving. Journal of Symbolic Computation, 68:61-92, 2015.

[6] Isabela Dramnesc, Tudor Jebelean, Sorin Stratulat. Mechanical synthesis of
sorting algorithms for binary trees by logic and combinatorial techniques.
Journal of Symbolic Computation 90: 3-41, 2019.

[7] Isabela Dramnesc and Tudor Jebelean. Synthesis of sorting algorithms using
multisets in Theorema. Journal of Logical and Algebraic Methods in
Programming, 119(100635), 2021.

[8] Isabela Dramnesc and Tudor Jebelean. AlCons: Deductive Synthesis of
Sorting Algorithms in Theorema. In Proc. of the 18th International Colloquium
on Theoretical Aspects of Computing (ICTAC'21), volume 12819 of LNCS, pages
314-333. Springer, 2021.

Isabela Dramnesc Introduction to the Theorema System 47 /65

Algorithm verification

Verification of algorithms in Theorema

Outline
@ Problem and approach
@ Implementation overview: some special rules

@ Results

Isabela Dramnesc Introduction to the Theorema System 48 /65

Algorithm verification

Problem and Method

Problem: Given an algorithm, prove that the algorithm is correct
(including the verification of auxiliary algorithms).
Specification: the output is sorted and preserves the multiset.
— two logical conjectures
Proofs:
@ Automatically generated by the Theorema prover:
@ success: proof —» the correctness of the algorithm
o failure: “cascading” (generates further conjectures for
verification of auxiliary functions)
@ Script in Coq
Case study
@ Verification of: Bubble-Sort, Insert—Sort, Merge—Sort,
Quick=Sort, Patience-Sort, Min-Sort, Max—Sort,
Min—Max—Sort on lists, by using the Theorema and Coq
systems.

Isabela Dramnesc Introduction to the Theorema System 49 /65

Algorithm verification

Motivation

Algorithm certification or program verification have an
increasing importance in the current technological landscape, due
to the sharp increase in the complexity of software (adverse effects
in case of failure)

o for instance robots constitute a particular class of systems
that can present high risks of software failures.

Sorting has a growing area of applications,

@ in particular the ones where organizing huge data collections
is critical, as for instance in environmental applications.

Compare the characteristics and the performance of Theorema
and Coq.

Isabela Dramnesc Introduction to the Theorema System 50 /65

Algorithm verification

The logical conjecture in Theorema

¥<I550rted[50rt[X]] A M[X] = M[Sort[X]])

@ The conjecture is split in two;

@ The proofs in Theorema are automatically generated by our
prover which uses:

e some special inference rules;
o definitions and additional lemmas in the knowledge base.

Isabela Dramnesc Introduction to the Theorema System 51 /65

Algorithm verification

Implementation Overview

The prover: a collection of rewrite rules corresponding to
inferences.

o : 1 o
@ A proof situation (assumptions, goal) ~—5 new proof situation
o Alternatives: an AND-OR proof tree is created,

@ Some of the alternatives may fail — the termination is ensured
by the Theorema mechanism for controlling the depth of the
proof tree.

Isabela Dramnesc Introduction to the Theorema System 52 /65

Algorithm verification

Implementation Overview

The Theorema-based prover uses the the methods:
@ Classical propositional and first order inferences similar to the
ones from sequent calculus.
o Generalized Noetherian induction that finds inductive
hypotheses automatically.
@ Domain specific methods for the types handled by the prover
(multisets, lists).

These methods are implemented as:
@ Inference rules: describe how to change the proof status in
one proof step.
o Strategies: describe how to combine several inference rules.

Isabela Dramnesc Introduction to the Theorema System 53 /65

Algorithm verification

R1. Generalized induction

@ Uses the Noetherian induction based on the well-founded
ordering between lists;

@ Checked syntactically by a meta—relation between terms
induced by the strict inclusion of the multisets of the terms
(U < V is determined by M[U] C M[V]).

When needed, this rule applies to introduce a novel induction
hypothesis with a smaller list.

e Example: the main goal is IsSorted[Insert[ag, by -~ Up]], then
IsSorted[Insert]ag, Up]| is assumed,
because Uy is smaller than by — Up.

Isabela Dramnesc Introduction to the Theorema System 54 /65

Algorithm verification

R2. Cascading

@ When a goal cannot be proved, a new conjecture is generated
from the current goal and by using only the assumptions that
are needed (the ones which contain the Skolem constants
occurring in the goal);

@ The conjecture is of the form XVyA[X, Y] = G[X,Y]

where
e X, Y are the Skolem contants from the current goal,
e A is composed from the needed assumptions, and
e G is the current goal;
@ A new proof attempt starts, and typically, the novel generated
conjecture corresponds to the verification of auxiliary
functions used in the sorting algorithms.

Isabela Dramnesc Introduction to the Theorema System 55 /65

Algorithm verification

R3. Preserving multisets

This rule is based on the following principle: the formula
E1[X1,X2, ...,Xl,XQ,] S Eg[yl,yz, ceny Yl, Y2,],

where only —, Insert, and Merge occur in the expressions E; and
E>, can be transformed into:

x1<y,yo,...YL, Yo, ... A< y1,¥o,... Y, Yo, ... A ...
AX1 <y, ¥y, .. Y, Yo, . . .AXo < yi1,¥0,... Y1, Yo, . .. AL

(Each argument of E; is smaller than each argument of E;.)
Example: A goal (or an assumption) of the form

Insert[a, T] < Merge[U, b~ V]
is transformed into
a<UNa<bANa<VATSUANTbAT<V.

Isabela Dramnesc Introduction to the Theorema System 56 /65

Algorithm verification

The algorithms

Insert—Sort
Merge—Sort
Bubble-Sort
Quick=Sort
Patience—Sort
Min-Sort
Max-Sort
Min—Max—=Sort

Example: Min—Max-Sort returns the sorted version of the input
list. It places the minimum of the input list at the beginning of the
output and the maximum at the end of the it, and then applies
recursively to the list of the remaining elements, selected by the
function TrimMM.

Isabela Dramnesc Introduction to the Theorema System 57 /65

Algorithm verification

Algorithm

YU(Triml\/Il\/l[a — (b— U)] = TrimMmAa, b, U])

a<b
YV (TrimMM[a — (b — U)] = TrimMmAI[b, a, U])

a,b,
b<a

Algorithm

Vb(TrimMmA[a, b, ()] = ()

N (TrimMmA[a, b, ¢ — U] = a — TrimMmA[c, b, U])
a7 7C7

c<a

bV (TrimMmA([a, b, c — U] = ¢ — TrimMmA|a, b, U])
a7 7C7

(a<cAc<b)

bV (TrimMmAl[a, b, c — U] = b — TrimMmA|a, c, U])
a7 7C7

b<c

Isabela Dramnesc Introduction to the Theorema System 58 /65

Algorithm verification

Computation with the Algorithms

x

ALGORITHM (MINMAXSORT)
e MMS[()] = <) ahEx
In[84):= vV MMS[a- ()] = O Sort-2) X
Infesl= Y, MMS[a- (b-U)] = min(a~ (b-U)] - (MHS[TrimhM[a~ (b-U)]] ~max[a- (b-U)]) x

ab,

]
Compute
MMS[3 - ()]
3-0)
MMS[3 - (2- (3~ (6~ (8- (10-¢))))))]
A= B= @= B= B= 0=
MMS[10- (2~ (3~ (6~ (8- (10-())))))]
2-(3-(6- (8- (10~ (10- ()
MMS[1-(2-(3- (6~ (8-(10-¢))))))]
1-(2-(3-(6- (8- (10-
MMS[10- (4~ (3~ (2~ (8~ (1-¢))))))]
1-(2-(3-(4-(8-(10-
Isabela Dramnesc on to the Theorema System 59 /65

Algorithm verification

Proving in Theorema

oo M Max Sort preservs. multetsn - Wollram Mathematics
Edit_Insert_Format_Cell Graphics _Evaluation _Palettes Window _Help. =] Mmm
[0 & et
‘CONJECTURE (MIX- MAX SORT PRESERVES MULTISETS) k | Restore dofeults | | Showell
i i [Filtered by.
k=Y MIX] = MIMNS [X]] =r
X ~00 Tuple Prover
L] ~ Initialization
KB Definition multisets, Algorithm Min-Max-Sort, and the following properties.
The goal is true
- Knowledge base contains the proof goal
LR AIQ T M BRI § - Pastknowledge base contains the proof gog
~ True assumption
v MITAmM[U]] € M[U] i - Split assumed conjunction
wo .
ntifiers
L ~ Skolemize the universal goal
plify
A T 1 Bl - Expandmiliset erms
@/ 3 - Processnew assumption
@/ 3~ Processnew goal
oy MUUT = {{nin[U]}} | MLTrAM[U]] | ({maxU]}} e @kt | Simplifysssumption
@/ 1 - Simplify goal by one rule
@/ 1 ~ Simplify goal by several rules
1 § Nemery corsumed by ithemat: 1606 0%
2rc = WG o gy g LM
B Qs ETZeTBve +BRAE - ha e eaw e

Isabela Dramnesc Introduction to the Theorema System

Algorithm verification

Generated Proof and Proof Tree in Theorema

[E3 theorema Proof - Wolfam Mathematia 1.3

g0 knoweage | b pover | vt o [N

Fie Edt Insert Format Cel Graphics Evslustion Palettes Window _Help

v Proof Simplification
B GO g U G R T .| PROVE
TSorted Insert 37, L0] | ATsSorted (RO) A (Insert a7 20) A (a [COREITE
SOLVE &
Using "A#227.4", the goal Geson) is simplified to A
A
Tasorted|Tnsert 77, L0] | ATsSorted[RO) A (Tnsert a7, y ’ A
v
Using "A#227.2", the goal Gess2) is simplified to: INFORM v A
s d [1 7, L0|| A (x 1 x o A
sSorted Insert [, (znser (a7, a ’ x ra
A A
Using "insert-less-elem-mg?, the goal Geso3 i simplified to: e A
Isorted tnsert a7, L0] | A (3 5 20) A (L0 < a0) ’ A A
A A
Using "A#227.3", the goal G594 is simplified to: A v
ALK x A A
TsSorted Insert 37, L0) < A v v v v
A AN B KA & p &
The conjunction as4ss) is splitinto: A A A A A
A A A A
([nsert A A A A
A A A A
IsSorted[Insert A A A A
ing " " . A t A t
Using "A#448.2", the goal (Ge595)is simplified to: A A
The goal is used as a condition in the following clause of the algorithm:
Insert
Abon proct
Success. v |

n to the Theorema System 61 /65

Algorithm verification

Results

@ A Theorema prover for proof-based algorithm synthesis and
verification on lists using multisets.

This case study

@ shows that, even though the algorithms are very well-known,
proving the correctness is not trivial;

@ the use of multisets is very important as it allows to express
more easily the fact that two lists have the same elements;

@ the techniques used lead to more efficient proofs, and simplify
the proving process — in Theorema the proofs are generated
in a few seconds and are easy to understand.

Isabela Dramnesc Introduction to the Theorema System 62 /65

Algorithm verification

References

[9] Isabela Dramnesc, Tudor Jebelean, and Sorin Stratulat. Certification of Tail
Recursive Bubble-Sort in Theorema and Coq. In LPAR 2024 Complementary Volume,
volume 18 of Kalpa Publications in Computing, pages 53-68. EasyChair, 2024, Port Louis,
Mauritius.

[10] Isabela Drimnesc, Tudor Jebelean, and Sorin Stratulat. Certification of Sorting
Algorithms using Theorema and Coq. In Proc. of the 10th International Symposium on
Symbolic Computation in Software Science (SCSS'24), volume 14991 of LNCS, pages
38-56. Springer, 2024, Tokyo, Japan.

[11] Isabela Dramnesc, Tudor Jebelean, and Sorin Stratulat. Formal Certification of
Synthesized Sorting Algorithms. In Proc. of the 13th International Conference on Logic
and Applications (LAP'24), 2024, Dubrovnik, Croatia (to appear).

[12] Isabela Drimnesc, Tudor Jebelean, and Sorin Stratulat. Certification of Insert—Sort
and Merge—Sort in Coq. In Proc. of the 4th International Conference on Electrical,
Computer, Communications and Mechatronics Engineering (ICECCME'24), 2024, Male,
Maldives (to appear).

Isabela Dramnesc Introduction to the Theorema System 63 /65

Conclusions

Theorema is a very nice automated theorem prover that can be
used for both
@ Teaching:

o Automated Theorem Proving,
o Algorithm Synthesis and Mathematical Theory Exploration.

@ Research: algorithm synthesis and verification.

Ongoing and future work!
e Verify robotic algorithms in Theorema (e.g. Dijkstra, A*, ..)

@ Increase the automation of proving and of finding necessary
lemmata in Theorema

! Acknowledgements: This work is co-funded by the European Union through
the Erasmus+ project AiRobo: Artificial Intelligence-based Robotics,
2023-1-RO01-KA220-HED-000152418, https://airobo.info.uvt.ro

Isabela Dramnesc Introduction to the Theorema System 64 /65

https://airobo.info.uvt.ro

Conclusions

Thank you for your attention!

Isabela Dramnesc Introduction to the Theorema System 65 /65

	Introduction to the system
	Algorithm synthesis
	Algorithm verification
	Conclusions

