Introduction to the Theorema system

Isabela Drămnesc

Computer Science Department West University of Timișoara Romania

FROM 2024 17 September Timișoara, Romania

- 2 Algorithm synthesis
- 3 Algorithm verification

▲ 伊 ▶ ▲ 王 ▶

< ∃ →

The Theorema system

Web page:

www.risc.jku.at/theorema

• Conceived and initiated around 1995 by *Bruno Buchberger* and reflects his view of "doing mathematics".

Theorema 2.0 is a major re-launch

• Mainly developed by Wolfgang Windsteiger.

Implementation: Mathematica

• Proving uses only the rewrite mechanism of Mathematica.

Supports:

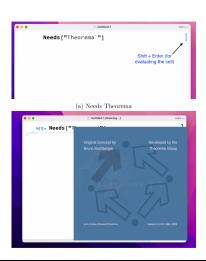
- Development of mathematical theories in natural style.
- Proving in natural style.
- Definition and execution of algorithms.
- Construction of provers for various domains.

Installation

Home page:

www.risc.jku.at/research/theorema/software

User mode

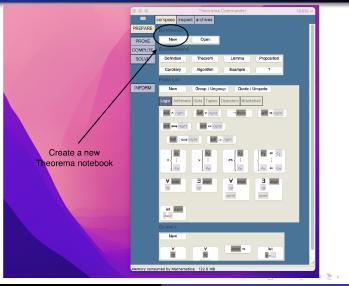

- Mathematica software needed
- Download the Theorema package and copy it in the Mathematica folder

Developer mode

- Needed: Mathematica, Eclipse, JDK, Workbench
- Download the Theorema package and include it in Eclipse
- Installation guide here.

A (1) < A (1) </p>

Loading Theorema in user mode

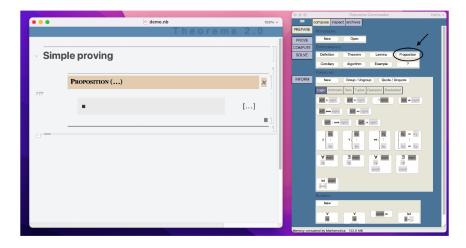

compose inspect archives EVENT EVENT New Open Deventor Corellary Algorithm Example ? FORMULA			
SERVE Normacous Normacous Open NORMATE Open SUPURE Enverse Lenna Popealion Oracles Open 2 Popealion Theorem Lenna Popealion Oracles Open Outer Unspace Oracles Open Outer Unspace Oracles Outer Unspace Image Oracles Image Image Oracles Image Image Oracles Image Image Oracles Image Image Image Image Image Image Image Image	000		125% ~
New Cont Statute		compose inspect archives	
TRY EVENCEATE SOLVE EVENCEATE SOLVE EVENCEATE SOLVE EVENCEATE SOLVE TOURS TOUR EVENCE FORMULE SOLVE TOUR TOUR EVENCE FORMULE FORMULE SOLVE TOUR EVENCE FORMULE FOR	PREPARE	NOTEBOOKS	
Month Defendion Theorem Lemma Proposition Corollary: Agostim Example 7 POPMULAR Corollary: Corollary: Corollary: Month Month Corollary: Corollary: Month Month Corollary: Corollary: Month Month Corollary: Corollary: Month Month Month Corollary: Month Month Month Month Month Month Month <	PROVE	New Open	
Cordiary Agertim Example ? FORMULAS Image: Cordiary Outer / Ungroup Outer / Ungroup Vice Image: Cordiary Image: Cordiary Image: Cordiary	OMPUTE	ENVIRONMENTS	
FORMULA NOT DOUGLINGTON DUCLINGTON TOTOL OF THE CONTON DUCLING A CONT VIEW OF THE OFFICE FORMULA A CONTON OF THE OFFIC	SOLVE	Definition Theorem Lemma Proposition	
New Ocup/Lingname Outor/Lingname Image: Solution Solution Image: Solution Solution Solution Image: Solution Solution Solution Solution Image: Solution		Corollary Algorithm Example ?	
Import		FORMULAS	
Image:	INFORM	New Group / Ungroup Quote / Unquote	
Image:		Logic Arithmetic Sets Tuples Operators Bracketted	
Image: Second			
Image: Control of the state			
Not constant to Marketone Value 20		left ⇔ right left == right left ⇔ right left = right	
V Concentrative Valuations V			
NY CONTRACTOR 143 218			
Nor and			
NV CONTRACTOR 14.3 218			
NV CONTRACTOR 14.3 218			
GLOBALS New V V V V V V V V V V V V V V V V V V V			
New Main and Annual State Stat			
NY converting Videbratics 1943 VID			
ney conumed by Mathematics 1943 918			
ny: concerned by Mathematica. 164.3 MB		A A 20000 ⇒ let	
(日) (四) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日	emory consum	ed by Mathematica: 164.9 MB	
	encry consum		3

Isabela Drămnesc

Introduction to the Theorema System

Algorithm verification Conclusions

Create a new notebook



Isabela Drămnesc

Introduction to the Theorema System

Algorithm synthesis Algorithm verification Conclusions

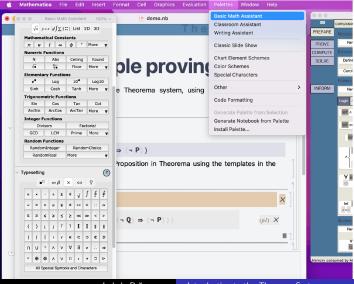
Proving

イロト イボト イヨト イヨト

æ

Algorithm synthesis Algorithm verification Conclusions

Proving

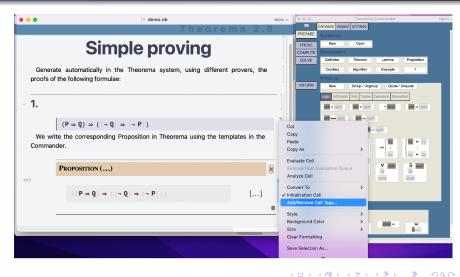

	demo.nb	150% ~	000	Т	heorema Commander	100% ~
	Theorem	na 2.0	PREPAR	compose inspect arc	thives	
		11	PREPAR	NOTEBOOKS		
S	Simple proving		PROVE		Open	
L C			SOLVE		eorem Lemma	Proposition
Constate automation	ally in the Theorema system, using different	arouaro the	30676		porithm Example	
proofs of the following		provers, the		FORMULAS	Competence of the second secon	_
proofs of the following	Iomulae.		INFORM		up / Ungroup Quote /	Unquote
				Logic Arithmetic Sets	Tuples Operators Brack	Interl
· 1.				left A right		
					· ingine	
$(P \Rightarrow 0) \Rightarrow$	$((\neg \mathbf{Q}) \Rightarrow (\neg \mathbf{P}))$	9			aft == right	\sim
				int : right	Aert := right	
	conding Proposition in Theorema using the temp	lates in the				f eg e cg
Commander.				A : V		: cn = cn
]				
PROPOSITIO	N ()	×			expr V expr	3 expr
222					cond	cond
				let water		
		[]				
		= 1		GLOBALS		
/				New		
Click inside the box	and choose the template from Theorema	Commander		<u>v</u>	V cond >	let
					19	2
			Memory co	nsumed by Mathematica: 12	22.7 MB	

æ

8 / 65

Algorithm synthesis Algorithm verification Conclusions

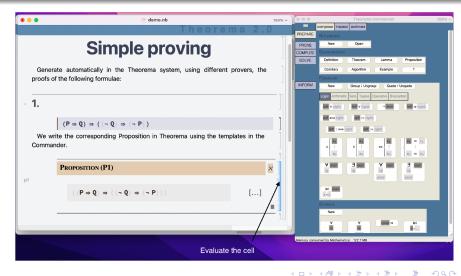
Proving


Isabela Drămnesc

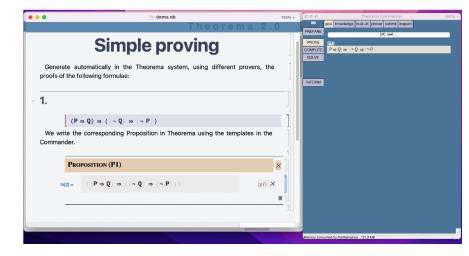
9 / 65

э

Algorithm synthesis Algorithm verification Conclusions


Proving

10 / 65


Algorithm synthesis Algorithm verification Conclusions

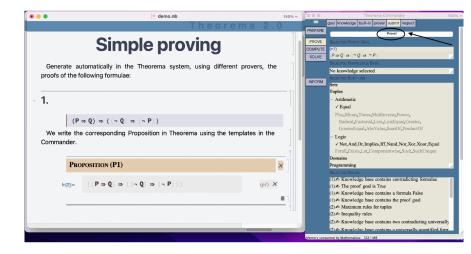
Proving

Algorithm synthesis Algorithm verification Conclusions

Proving

(日)

э

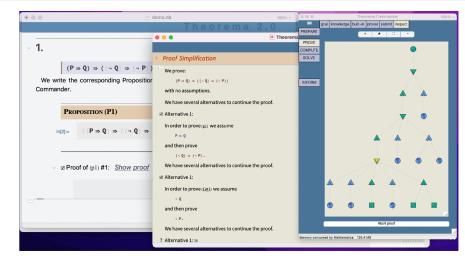

Options to choose from

	demo.nb	150% ~	000	Theorema Commander 100% ~
	Theorem	a 2.0	PREPARE	goal knowledge built-in prover submit inspect
	Simple proving		PROVE COMPUTE SOLVE	OK, next Pricor Russ Basic Theorema Language Rules Phoor Russ Scrue Choose a prover
	utomatically in the Theorema system, using different pr ollowing formulae:	rovers, the	INFORM	Peston defauta Stow al Plened by: V Basic Theorema Language Rules
~ 1.]		
	⇒ Q) ⇒ ((¬ Q) ⇒ (¬ P)) e corresponding Proposition in Theorema using the templa	ates in the		Rules for Equality Z^A Rules based on Rewriting A Special Arithmetic for the Prove by contradiction
Pro	OPOSITION (P1)	×		PROOF STRATEGY Apply once + Level saturation Proof: SEARCH Lawts
In[2]:=	$(\ (P\RightarrowQ)\ \Rightarrow\ (\ (\neg\ Q)\ \Rightarrow\ (\neg\ P)\)\)$	(pl) X		Search Depth 30 -
		[[[¹		Search Time 360 + + + + + + + + + + + + + + + + + +
			Memory cons.	med by Mathematica: 122. MB

イロト イヨト イヨト

æ

Prove submit

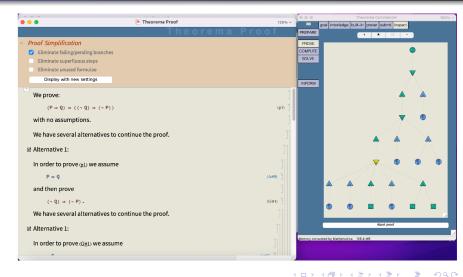


イロト イボト イヨト イヨト

э

14 / 65

The proof and the proof tree


Isabela Drămnesc Introduction to the Theorema System

イロト イヨト イヨト

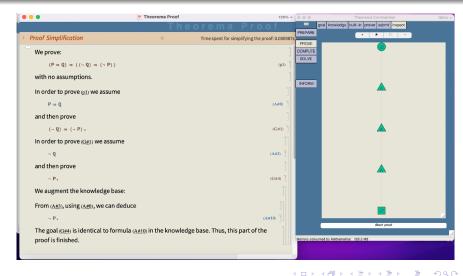
15 / 65

э

Simplify the proof

16 / 65

Both simplified and full proof


	e demo.nb	150% ~	000	Theorema Commander 100% 🗸
	Theorema	2.0	PREPARE	compose inspect archives
		11	PROVE	NoteBooks New Open
	Simple proving		COMPUTE SOLVE	Definition Theorem Lemma Proposition
	Generate automatically in the Theorema system, using different provers	s, the		Corollary Algorithm Example ? FORMULAS
	proofs of the following formulae:		INFORM	New Group / Ungroup Quote / Unquote
~	1.]][Mill & right Mill w right Nill w right Mill w right Mill w right Nill w right
	$(P \Rightarrow Q) \Rightarrow ((\neg Q) \Rightarrow (\neg P))$			
	We write the corresponding Proposition in Theorema using the templates in Commander.	n the		
	PROPOSITION (P1)	i		A constant of the second of th
	$\ln(2) = \left(\left(\mathbf{P} \Rightarrow \mathbf{Q} \right) \Rightarrow \left(\left(\neg \mathbf{Q} \right) \Rightarrow \left(\neg \mathbf{P} \right) \right) \right)$	pl) X		
		=]]		GLOBALS
	Ø Proof of (p1) #1: Show simplified proof Show full proof	×		
	knowledge built-in prover Restore setting		2 Memory consi	umed by Mathematica: 126.3 MB
		-		

< ロ > < 同 > < 三 > < 三 >

17 / 65

æ

The simplified proof

18 / 65

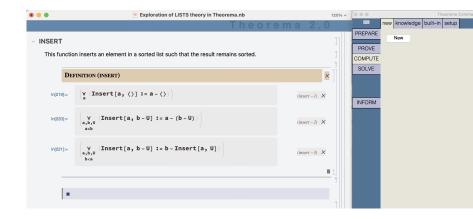
Exercises (proving)

Exercises. Consider the following formulae:

- $1. \ (P \Longrightarrow Q) \Longrightarrow (Q \Longrightarrow P)$
- $2. \ P \lor (P \Longrightarrow Q)$
- $3. \ ((P \Longrightarrow Q) \land (Q \Longrightarrow R)) \Longrightarrow ((P \land Q) \Longrightarrow R)$
- $4. \ ((Q \Longrightarrow P) \land (Q \Longrightarrow R)) \Longrightarrow ((P \lor Q) \Longrightarrow R)$

For each of these formulae:

- (a) following the examples shown, generate both the full proof and the simplified proofs in the Theorema system;
- (b) generate in Theorema different proofs by choosing different provers, different inference rules to be applied, change the search depth, change the search time;

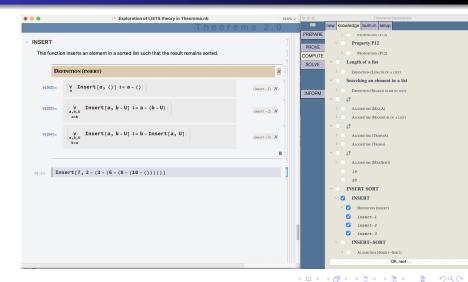

▲□▶ ▲御▶ ★臣▶ ★臣▶ ―臣 … 釣�()~

Introduction to the system Algorithm verification Conclusions

Theory exploration

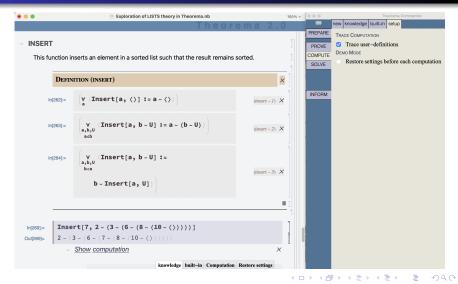
		Exploration of LISTS theory in Theorema.nb	150		Compose inspect archives
		Theore	ma 2.0	PREPARE	Notebooks
		Lists Theory Exploration		PROVE	New Open
				COMPUTE	ENVIRONMENTS
() is the empty	list, $a eq U$ (a is the first element in the list, U is the tail)		SOLVE	Definition Theorem Lemma Proposition Corollary Algorithm Example ?
	RST ELE	MENT		1	Formulas
				INFORM	New Group / Ungroup Quote / Unquote
	DEFIN	ITION (FIRST ELEMENT)	×		Logic Arithmetic Sets Tuples Operators Bracketted
	DIAL	. ,	<u>^</u>		left ∧ right left v right ¬ form left ⇒ right
	In[181]:=	$ \left(\begin{array}{c} \forall \\ a, U \end{array} \right) $ (FirstEl[a ~ U] := a)	(first_elem) 🗙		left ⇔ right left == right left >= right
					$\Lambda \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_n \end{bmatrix} \mathbf{v} \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_n \end{bmatrix} \Leftrightarrow \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_n \end{bmatrix} \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_n \\ \mathbf{a}_n \end{bmatrix} \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_n \\ \mathbf{a}_n \end{bmatrix}$
+					V expr ∃ expr V expr ∃ expr rg rg rg rg
~ T	he TAIL	of a list			cond cond
	DEFIN	ITION (TAIL OF A LIST)	×		GLOBALS
					New
	In[182]:=	$\left(\begin{array}{c} \textbf{V} \\ \textbf{a}, \textbf{U} \end{array} \right) \left(\texttt{Tailof[a ~ U] := U} \right)$	(tail_of) X		V V v cond ⇒ let ra ra
			<u> </u>		
Territoria	1	**			
				• • • •	- ◆ 母 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q @

Compute with definitions



21 / 65

э


Algorithm synthesis Algorithm verification Conclusions

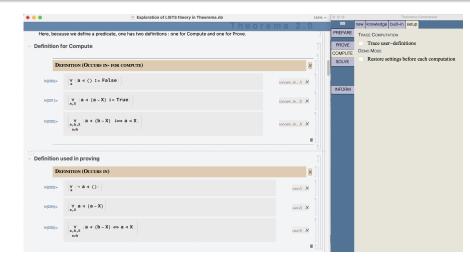
Select KB

22 / 65

Compute Insert

Show computation steps

	Explore	tic 😑 😑 🕒	Theorema Computation	125% ~		Theorema Commande
			Theorema Compu	tation	-	new knowledge built-in setup
· INSERT		↓ Insert[7, 2	$2 \sim (3 \sim (6 \sim (8 \sim (10 \sim \langle \rangle))))]$ $2 \sim (3 \sim (6 \sim (8 \sim (10 \sim \langle \rangle))))]$		PREPARE	TRACE COMPUTATION Trace user-definitions DEMO MODE
This fu	nction inserts an element in a DEFINITION (INSERT)	Fa	alse 2 ~ (3 ~ (6 ~ (8 ~ (10 ~ ⟨⟩))))]		SOLVE	 Restore settings before each com
In	(262):= (¥ (Insert[a,		ue rt−3) 2 ~ Insert[7, 3 ~ (6 ~ (8 ~ (10 ~ (⟩)))] Insert[7, 3 ~ (6 ~ (8 ~ (10 ~ (⟩)))] ♀	81 10 10 10 10 10 10 10 10 10 10 10 10 10	INFORM	
In	[263]:= ∀ (Insert [a a,b,U a≤b		≤ 3 llse Insert[7, 3 ~ (6 ~ (8 ~ (10 ~ ())))] ♀ √ 3 < 7	8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
In	[264]:= ∀ (Insert[a a,b,U b <a< th=""><th>,</th><th>True $\downarrow_{(insert-3)}$ 3~Insert[7, 6~(8~(10~()))] \downarrow Insert[7, 6~(8~(10~()))] \Diamond</th><th>and a second sec</th><th></th><th></th></a<>	,	True $\downarrow_{(insert-3)}$ 3~Insert[7, 6~(8~(10~()))] \downarrow Insert[7, 6~(8~(10~()))] \Diamond	and a second sec		
	b - Insert [ise ↓ Insert[7, 6 ~ (8 ~ (10 ~ ()))] ∨ √ 6 < 7 True ↓ (insert-3), 6 ~ Insert[7, 8 ~ (10 ~ ())]	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100		
In[269]:= Out[269]=	Insert[7, 2 - $(3 - (6 - (7 - (8 - (1 - 1)))))$		Ţ Inset[7, 8 ~ (10 ~ (>)] ♀ √ 7 ≤ 8 True	Berlin Berlin Berlin		
	 Show computation 	= 2~($ \begin{array}{c} 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$			


Compute with predicate definitions

• • •	Exploration of LISTS theory in Theorema.nb	125%	- 000	Theorema Commander
				new knowledge built-in setup
Here, b	because we define a predicate, one has two definitions : one for Compute and one for Prove.		PREPARE	TRACE COMPUTATION
Definitio	on for Compute		PROVE	Trace user-definitions
			COMPUTE	 Restore settings before each computation
	DEFINITION (OCCURS IN- FOR COMPUTE)	×]]	JOEVE	
In(230	nj:= (∀ (a ⊲ ⟨) := False)	(occurs_in_l) ×		
	(a) · · · /	(0.007_0.7)	INFORM	
ln(231	$ _{a,X} (a < (a - X) := True)$	(occurs_in_2) 🗙		
In(232	$P_{a,b,X} = \begin{pmatrix} v \\ a,b,X \end{pmatrix} (a \triangleleft (b-X) : t \Leftrightarrow a \triangleleft X)$	(occurs_in_3) ×		
In(270):=	a ⊲ (a - ⟨⟩)			
Out[270]=	True	1		
In(271):=	a < ()			
Out[271]=	False	1		
In(272):=	$1 \triangleleft (1 - (2 - \langle \rangle))$			
Out[272]=	True	1		
in(273):=	$1 \triangleleft (2 - (2 - (2 - (2 - (2 - (2 - (2 - (2$]		
Out[273]=	False	1		
In(274):=	$1 \triangleleft (2 - (2 - (2 - (2 - (2 - (2 - (1 - \langle \rangle)))))))))$			
Out[274]=	True			

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

Compute with predicate definitions

26 / 65

э

イロト イポト イヨト イヨト

References

[1] Isabela Drămnesc, Erika Ábrahám, Tudor Jebelean, Gábor Kusper, and Sorin Stratulat. **Experiments with Automated Reasoning in the Class**. In Proc. of the 15th International Conference on Intelligent Computer Mathematics (CICM'22), volume 13467 of LNCS, pages 287–304. Springer, 2022, Tbilisi, Georgia.

[2] Isabela Drămnesc, Erika Ábrahám, Tudor Jebelean, Gábor Kusper, Sorin Stratulat, **ARC: An Educational Project on Automated Reasoning in the Class** In Proceedings of EdMedia+ Innovate Learning 2022, pages 934–943, 2022, New York City, USA, AACE.

[3] Isabela Drămnesc, Erika Ábrahám, Tudor Jebelean, Gábor Kusper, Sorin Stratulat, **Automated Reasoning in the Class**, Journal of Computer Algebra Rundbrief, Nr. 71, pages 21–26, 2022.

[4] Isabela Drămnesc, Tudor Jebelean, Erika Ábrahám, Sorin Stratulat, Gábor Kusper, Mircea Marin, Adrian Crăciun, Csaba Bíró, Gergely Kovásznai, Nikolaj Popov, Computational Logic: A Practical Approach. Editura Universitatii de Vest, 2022.

Acknowledgements: This work was co-funded by the European Union, Erasmus+ project **ARC: Automated Reasoning in the Class**, 2019-1-RO01-KA203-063943, 2019 - 2022,

www.arc.info.uvt.ro

• □ ▶ • □ ▶ • □ ▶ • □ ▶

AlCons: A Prover for Deductive Synthesis of Sorting Algorithms in *Theorema*

Outline

- Problem and approach
- AlCons implementation overview
- Demo in Theorema
 - Algorithm generation on binary trees
 - Compute with the extracted algorithm

Algorithm synthesis

Starting from a specification of a problem

• find an algorithm which satisfies the specification including auxiliary algorithms (subroutines)

Synthesis by proving:

- $\bullet \ \ {\rm specification} \ \longrightarrow \ {\rm conjecture}$
- prove
- proof \longrightarrow algorithm

Main goal:

 Design methods, inference rules and strategies for constructing proofs (efficient, natural style) and for synthesizing auxiliary functions.

< □ > < 同 > < 三 >

Motivation

Study the structure of natural style proving.

Explore the appropriate theories (by adding properties and functions to the knowledge base during proof attempts).

Find efficient proof strategies and inference rules appropriate to the domains of lists, binary trees, and multisets.

Use multisets to express naturally the fact that two lists/trees have the same elements and to guide the synthesis proof.

< A > < 3

Problem and Method

Problem: Given a specification, find a correct algorithm. **Specification:** Input condition (*I*), output condition (*O*). **Synthesis conjectures:**

- Unary functions: $\forall_X (I[X] \implies \exists O[X, Y]).$
- Binary functions: $\forall \forall (I[X, Y] \implies \exists O[X, Y, Z]).$

Proofs:

- Automatically generated by AlCons:
 - $\bullet \ \text{success: proof} \longrightarrow \text{algorithm}$
 - failure: "cascading" (generates further synthesis conjectures for synthesis of auxiliary functions)

Algorithm extraction:

• One or more algorithms from one proof.

Case studies: Sorting of lists and binary trees.

Types

Elements: a, b, ctotal order: $a < b, a \le b$

Lists: U, V, W, X, Yinductive domain: $\langle \rangle$, $a \sim U$ extended order: a < U, $a \le U$, U < a, $U \le a$, U < V, $U \le V$

Binary trees: *L*, *R*, *S*, *T*, *X*, *Y*, *Z* inductive domain: ε , $\langle L, a, R \rangle$ extended order: a < L, $a \le L$, L < a, $L \le a$, L < R, $L \le R$

Multisets:

$$\begin{array}{c|c} \mathcal{M}[\langle\rangle] = \emptyset & \mathcal{M}[\varepsilon] = \emptyset \\ \mathcal{M}[\mathsf{a} \smile \mathsf{V}] = \{\{\mathsf{a}\}\} \uplus \mathcal{M}[\mathsf{V}] & \mathcal{M}[\langle \mathsf{L}, \mathsf{a}, \mathsf{R} \rangle] = \mathcal{M}[\mathsf{L}] \uplus \{\{\mathsf{a}\}\} \uplus \mathcal{M}[\mathsf{R}] \end{array}$$

A (10) < A (10) </p>

AlCons: Implementation Overview

The prover: a collection of rewrite rules corresponding to inferences (called *proof steps*).

- \bullet a proof situation (assm, goal) $\stackrel{\mathrm{rule}}{\longrightarrow}$ new proof situation
- Alternatives: an AND-OR proof tree is created,
- In contrast to the usual behavior of *Theorema* provers,
 AICons follows *all alternatives* —> may lead to different algorithms.
- Some of the alternatives may also fail the *termination* is ensured by the *Theorema* mechanism for controlling the depth of the proof tree.

Implementation Overview

AlCons is a *first order* prover based on the methods:

- *Classical* propositional and first order inferences similar to the ones from sequent calculus.
- Cover set induction applied both to universal and to existential goals.
- *Domain specific* methods for the types handled by the prover (multisets, lists, and binary trees).

These methods are implemented as:

- *Inference rules*: describe how to change the proof status in one proof step.
- Strategies: describe how to combine several inference rules.

Cover Set: Set of terms covering the domain.

Each element of the domain instantiates exactly one cover term. For binary trees: $\{\varepsilon, \langle L, a, R \rangle\}$ (L, a, R: variables). Target goal: $\forall \exists P[X, Y] \xrightarrow{\text{Skolem}} \exists P[X_0, Y] \xrightarrow{\text{metavar}} P[X_0, Y^*]$ X_0 : target constant, Y^* : target metavariable **On Skolem constants**: Prove $P[\varepsilon, Y^*]$ and $P[\langle L_0, a_0, R_0 \rangle, Y^*]$

- may use $P[L_0, F[L_0]]$ and $P[L_0, F[R_0]]$ (F: synth. funct.)
- determines the decomposition of the input

On metavariables:

Prove $P[X_0, \varepsilon]$ and $P[X_0, \langle L^*, a^*, R^* \rangle]$

- may replace L^* by $F[L_1^*]$ and R^* by $F[R_1^*]$
- determines the structure of the output

In a nested way on the new Skolem constants and metavariables

 \longrightarrow Algorithms with nested recursion, and with recursion on

several arguments

Dynamic induction

Dynamically generates new induction hypotheses during the proof.

Noetherian induction based on the well-founded ordering: $L \prec R$ is $\mathcal{M}[L] \subset \mathcal{M}[R]$

Checked *syntactically* at meta-level: meta-relation between terms induced by the strict inclusion of the multisets of symbols

• Example: $\langle L_0, a_0, R^* \rangle \prec \langle L_0, a_0, \langle R^*, b_0, S^* \rangle \rangle$

Usage:

- ground term t ≺ X₀ (target constant): add P[t, Sort[t]] to assumptions.
- metavariable L^{*} ≺ Y^{*} (target metavariable): replace in goal L^{*} by F[L^{*}] (target function applied to a new metavariable)

くロ と く 同 と く ヨ と 一

Strategy: Cascading (conjecture generation)

Synthesizing auxiliary functions:

- generate conjecture
- prove conjecture \longrightarrow algorithm
- use auxiliary function in proof

Conjecture generation:

- Skolem constants from goal \longrightarrow universal x, x', \dots
- metavariables from goal \longrightarrow existential y, y', \ldots
- conjecture:

$$\forall \forall \dots (P[x, x', \dots] \Longrightarrow \exists \exists \dots Q[x, x', \dots, y, y', \dots])$$

- *P*[*x*, *x'*,...]: from the assumptions containing <u>only</u> the Skolem constants present in goal
- $Q[x, x', \dots, y, y', \dots]$: from the goal

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Strategy: Cascading (function usage)

Using the generated functions F[x, x', ...], F'[x, x', ...]:

• new assumption:

$$\forall \forall \dots (P[x, x', \dots] \Longrightarrow Q[x, x', \dots, F[x, x', \dots], F'[x, x', \dots], \dots])$$

- use the new function symbols in the goal
- contributes to automatic theory exploration

38 / 65

Group multisets

The goal contains the equality: $\mathcal{M}[Y^*] = \mathcal{M}[t_1] \uplus \mathcal{M}[t_2] \uplus \dots$ Proof flow: transform the union into $\mathcal{M}[t]$ (then $Y^* = t$) Stepwise: groups pairs $\mathcal{M}[t_1] \uplus \mathcal{M}[t_2]$ (different groupings \longrightarrow proof alternatives)

For each pair, find the function F such that:

$$\mathcal{M}[\mathit{F}[t_1, t_2]] = \mathcal{M}[t_1] \uplus \mathcal{M}[t_2]$$

Possibilities:

- F is already known, the proof works by predicate logic;
- induction can be applied (if F is the target function)
- cascading is necessary for the synthesis of F

< ロ > < 同 > < 回 > < 回 >

Example: Group multisets and cascading

The goal is: $IsSorted[Y^*] \land \mathcal{M}[Y^*] = \mathcal{M}[a_0] \uplus \mathcal{M}[R_0] \uplus \dots$ The assumptions contain: $IsSorted[R_0]$

Group pair: $\mathcal{M}[a_0] \uplus \mathcal{M}[R_0]$

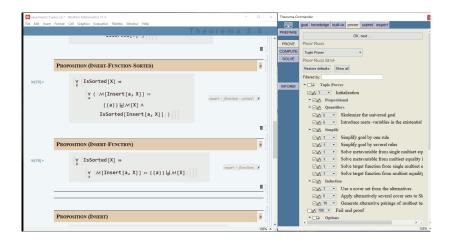
Cascading: synthesize *Insert* from the conjecture:

 $\forall \forall \exists (\mathit{IsSorted}[R] \implies (\mathit{IsSorted}[Y] \land \mathcal{M}[Y] = \mathcal{M}[a] \uplus \mathcal{M}[R]))$

Add new assumption:

 $IsSorted[R] \implies (IsSorted[Insert[a, R]] \land \mathcal{M}[Insert[a, R]] = \mathcal{M}[a] \uplus \mathcal{M}[R])$

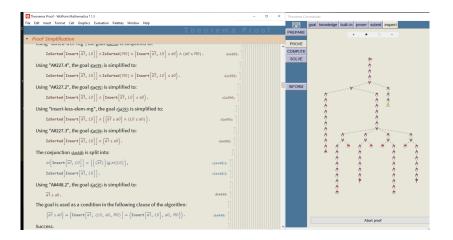
Change goal to: $IsSorted[Y^*] \land \mathcal{M}[Y^*] = Insert[a_0, R_0] \uplus \dots$


▲御▶ ▲ 国▶ ▲ 国▶ - 国 - 釣Q(や

The extracted algorithm: set of conditional equalities

- $\{Q_k \Rightarrow (F[\mathcal{X}] = T_k)\}_{k=1}^n (\mathcal{X} \text{ is a pattern cover set term})$
- Q_k are formulae; T_k are terms (dependent on variables of the pattern)

▲ 伊 ▶ ▲ 王 ▶


Proving in Theorema

・ロト ・回ト ・ヨト ・ヨト

э

Generated Proof and Proof Tree in Theorema

< D > < A > < B > < B >

AlCons Demo

- The automatically generated proof of the above conjecture, by AICons.
- Basic properties used in the proof.
- Highligthing the solutions obtained.
- The extracted algorithm from the proof.

Proof animation

Computation with the Extracted Algorithm

	Theorem	a 2.t			Prepare	OK, ni	ot
The ex	tracted algorithm is:			1^	Prove	Filtered by:	Show all
	Algorithm (Insert an element in a tree)		×		Compute	Experiments-AlgorithmConstructor	
	$\left(\begin{array}{c} \forall \ (\texttt{Insert}[\texttt{a}, \ \epsilon] := \langle \epsilon, \ a, \ \epsilon \rangle) \end{array} \right)$	(<i>D10</i>)	×		Solve	Algorithm (Insert an element in a D10	2798)
	$ \left(\begin{array}{c} \forall \\ a, b, L, R \\ ab \end{array} \right) (Insert[a, \langle L, b, R \rangle] := \langle Insert[a, L], b, R \rangle) \\ ab \end{array} $	(DII)	×		Inform	D11 D23	
	$\left(\begin{array}{c} v \\ a, b, L, R \\ a > b \end{array} \\ \left(\begin{array}{c} Insert[a, \langle L, b, R \rangle] := \langle L, b, Insert[a, R] \rangle \right) \\ a > b \end{array} \right)$	(Dl3)	×			OK, n	ot
in(5):= u1(5)=	<pre>Insert[3, c]</pre>						
in(6):= ut(6)=	<pre>Insert[3, ⟨ε, 5, ε⟩] (⟨ε, 3, ε⟩, 5, ε⟩</pre>						
h(7):= ut(7)=	Insert[3, $\langle \langle \epsilon, 3, \epsilon \rangle, 5, \epsilon \rangle$] $\langle \langle \langle \epsilon, 3, \epsilon \rangle, 3, \epsilon \rangle, 5, \epsilon \rangle$						
in(8):- 1u((8)-	$\begin{array}{l} \texttt{Insert[10, (\langle \epsilon, 3, \epsilon \rangle, 5, \langle \epsilon, 7, \langle \epsilon, 10, \epsilon \rangle \rangle)]} \\ \langle \langle \epsilon, 3, \epsilon \rangle, 5, \langle \epsilon, 7, \langle \langle \epsilon, 10, \epsilon \rangle, 10, \epsilon \rangle \rangle \rangle \end{array}$						
n(9):= ut(9)=	$ \begin{array}{l} \textbf{Insert[2, \langle \langle \epsilon, 3, \epsilon \rangle, 5, \langle \epsilon, 7, \langle \epsilon, 10, \epsilon \rangle \rangle \rangle } \\ \langle \langle \langle \epsilon, 2, \epsilon \rangle, 3, \epsilon \rangle, 5, \langle \epsilon, 7, \langle \epsilon, 10, \epsilon \rangle \rangle \rangle \end{array} $						
	Insert[22, $\langle \langle \varepsilon, 3, \varepsilon \rangle, 5, \langle \varepsilon, 7, \langle \varepsilon, 10, \varepsilon \rangle \rangle \rangle$]						

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

Results

- **AICons**: a powerful system for proof-based algorithm synthesis on lists and binary trees using multisets.
- The proofs are generated in a few seconds and are easy to understand.
- The most important proof strategies are: use cover sets together with multiset based Noetherian induction, pairing of multisets, and cascading.
- By using cover sets, no algorithm scheme and no concrete induction principles are needed in advance, as they are dynamically produced during the proof, and even nested induction algorithms can be generated automatically.

< ロ > < 同 > < 三 > < 三 >

References

[5] Isabela Drămnesc and Tudor Jebelean. **Synthesis of list algorithms by mechanical proving**. Journal of Symbolic Computation, 68:61–92, 2015.

[6] Isabela Drămnesc, Tudor Jebelean, Sorin Stratulat. Mechanical synthesis of sorting algorithms for binary trees by logic and combinatorial techniques. Journal of Symbolic Computation 90: 3–41, 2019.

[7] Isabela Drămnesc and Tudor Jebelean. Synthesis of sorting algorithms using multisets in Theorema. Journal of Logical and Algebraic Methods in Programming, 119(100635), 2021.

[8] Isabela Drămnesc and Tudor Jebelean. AlCons: Deductive Synthesis of Sorting Algorithms in Theorema. In Proc. of the 18th International Colloquium on Theoretical Aspects of Computing (ICTAC'21), volume 12819 of LNCS, pages 314–333. Springer, 2021.

< ロ > < 同 > < 三 > < 三 >

Verification of algorithms in Theorema

Outline

- Problem and approach
- Implementation overview: some special rules
- Results

→ < ∃ →</p>

Problem and Method

Problem: Given an algorithm, prove that the algorithm is correct (including the verification of auxiliary algorithms).

Specification: the output is sorted and preserves the multiset.

 \longrightarrow two logical conjectures

Proofs:

- Automatically generated by the *Theorema* prover:
 - $\bullet\,$ success: proof \longrightarrow the correctness of the algorithm
 - failure: "cascading" (generates further conjectures for verification of auxiliary functions)
- Script in Coq

Case study

 Verification of: Bubble–Sort, Insert–Sort, Merge–Sort, Quick–Sort, Patience–Sort, Min–Sort, Max–Sort, Min–Max–Sort on lists, by using the Theorema and Coq systems.

Motivation

Algorithm certification or program verification have an *increasing importance* in the current technological landscape, due to the sharp increase in the complexity of software (adverse effects in case of failure)

• for instance robots constitute a particular class of systems that can present high risks of software failures.

Sorting has a growing area of applications,

• in particular the ones where organizing huge data collections is critical, as for instance in environmental applications.

Compare the characteristics and the performance of **Theorema and Coq**.

A (10) < A (10) </p>

The logical conjecture in Theorema

$\begin{array}{l} \mathsf{Conjecture} \\ \forall _X \Big(\mathit{IsSorted}[\mathit{Sort}[X]] \land \mathcal{M}[X] = \mathcal{M}[\mathit{Sort}[X]] \Big) \end{array}$

- The conjecture is split in two;
- The proofs in *Theorema* are automatically generated by our prover which uses:
 - some special inference rules;
 - definitions and additional lemmas in the knowledge base.

< D > < A > < B > < B >

Implementation Overview

The prover: a collection of rewrite rules corresponding to inferences.

- A proof situation (assumptions, goal) $\stackrel{\mathrm{rule}}{\longrightarrow}$ new proof situation
- Alternatives: an AND-OR proof tree is created,
- Some of the alternatives may fail the *termination* is ensured by the *Theorema* mechanism for controlling the depth of the proof tree.

A (10) < A (10) </p>

Implementation Overview

The **Theorema**-based prover uses the the methods:

- *Classical* propositional and first order inferences similar to the ones from sequent calculus.
- Generalized Noetherian induction that finds inductive hypotheses automatically.
- *Domain specific* methods for the types handled by the prover (multisets, lists).

These methods are implemented as:

- *Inference rules*: describe how to change the proof status in one proof step.
- Strategies: describe how to combine several inference rules.

R1. Generalized induction

- Uses the Noetherian induction based on the well-founded ordering between lists;
- Checked syntactically by a meta-relation between terms induced by the strict inclusion of the multisets of the terms (U < V is determined by M[U] ⊂ M[V]).

When needed, this rule applies to introduce a novel induction hypothesis with a smaller list.

Example: the main goal is *IsSorted*[*Insert*[a₀, b₀ ∨ U₀]], then *IsSorted*[*Insert*[a₀, U₀]] is assumed, because U₀ is smaller than b₀ ∨ U₀.

A (1) < A (1) < A (1) < A (1) </p>

R2. Cascading

- When a goal cannot be proved, a new conjecture is generated from the current goal and by using only the assumptions that are needed (the ones which contain the Skolem constants occurring in the goal);
- The conjecture is of the form $\underset{X,Y}{\forall} A[X,Y] \implies G[X,Y]$

where

- X, Y are the Skolem contants from the current goal,
- A is composed from the needed assumptions, and
- G is the current goal;
- A new proof attempt starts, and typically, the novel generated conjecture corresponds to the verification of auxiliary functions used in the sorting algorithms.

< D > < () > < () > <</p>

R3. Preserving multisets

This rule is based on the following principle: the formula

$$E_1[x_1, x_2, ..., X_1, X_2, ...] \le E_2[y_1, y_2, ..., Y_1, Y_2, ...]$$

where only \smile , *Insert*, and *Merge* occur in the expressions E_1 and E_2 , can be transformed into:

$$x_1 \leq y_1, y_2, \ldots Y_1, Y_2, \ldots \wedge x_2 \leq y_1, y_2, \ldots Y_1, Y_2, \ldots \wedge \ldots$$

$$\wedge X_1 \leq y_1, y_2, \ldots Y_1, Y_2, \ldots \wedge X_2 \leq y_1, y_2, \ldots Y_1, Y_2, \ldots \wedge \ldots$$

(Each argument of E_1 is smaller than each argument of E_2 .) **Example:** A goal (or an assumption) of the form

$$Insert[a, T] \leq Merge[U, b \lor V]$$

is transformed into

$$a \leq U \land a \leq b \land a \leq V \land T \leq U \land T \leq b \land T \leq V.$$

The algorithms

- Insert–Sort
- Merge–Sort
- Bubble–Sort
- Quick–Sort
- Patience–Sort
- Min–Sort
- Max–Sort
- Min–Max–Sort

Example: *Min–Max–Sort* returns the sorted version of the input list. It places the minimum of the input list at the beginning of the output and the maximum at the end of the it, and then applies recursively to the list of the remaining elements, selected by the function *TrimMM*.

Algorithm

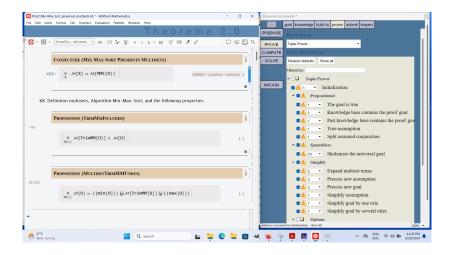
$$\begin{pmatrix} \forall (TrimMM[a \smile (b \smile U)] = TrimMmA[a, b, U]) \\ a \leq b \\ \forall (TrimMM[a \smile (b \smile U)] = TrimMmA[b, a, U]) \\ b \leq a \end{pmatrix}$$

Algorithm

$$\begin{pmatrix} \forall (TrimMmA[a, b, \langle \rangle] = \langle \rangle) \\ a,b,c,U \\ c < a \\ \forall (TrimMmA[a, b, c \smile U] = a \smile TrimMmA[c, b, U]) \\ c < a \\ \forall (TrimMmA[a, b, c \smile U] = c \smile TrimMmA[a, b, U]) \\ (a \le c \land c \le b) \\ \forall (TrimMmA[a, b, c \smile U] = b \smile TrimMmA[a, c, U]) \\ b < c \end{pmatrix}$$

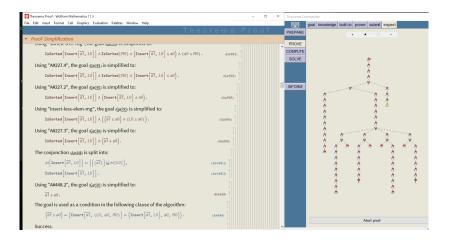
ヘロト ヘ部ト ヘヨト ヘヨト

æ


Computation with the Algorithms

4.4.00	;orithm (MinMaxSort)	Theorema 2.0
ALG	ORTHM (WINNAXSORT)	×
In[83]:=	$\langle MMS[\langle \rangle] = \langle \rangle \rangle$	(Min – Max – Sort – I) 🗙
In[84]:=	$ \begin{pmatrix} \forall MHS[\mathbf{a} \sim \langle \rangle] = \mathbf{a} \sim \langle \rangle \end{pmatrix} $	(Min – Max – Sort – 2) 🗙
In[85]:=	$\left[\begin{array}{c} \forall \\ a_{a,b,U} \end{array} \right \text{MMS} \left[a \sim \left(b - U \right) \right] = \text{min} \left[a \sim \left(b - U \right) \right] \sim \left(\text{MMS} \left[\text{TrimMM} \left[a \sim \left(b - U \right) \right] \right] \sim \text{max} \left[a \sim \left(b - U \right) \right] \right) \right) \right]$	(Min – Max – Sort – 3) X
Compute In[90]:= MMS Out[90]= 3 -	\$[3 ~ (\)] ()	
	5 [3 ~ (2 ~ (3 ~ (6 ~ (8 ~ (10 ~ (\)))))] (3 ~ (3 − (6 − (8 − (10 − (\))))))	
	$ \begin{bmatrix} 10 & (2 - (3 - (6 - (8 - (10 - ())))) \end{bmatrix} \\ (3 - (6 - (8 - (10 - (10 - ()))))) $	
	5[1 - (2 - (3 - (6 - (8 - (10 - ⟨⟩))))] (2 - (3 - (6 - (8 - (10 - ⟨⟩)))))	
	\$[10~(4~(3~(2~(8~(1~()))))] (2~(3~(4~(8~(1~())))))	

æ


・ 同 ト ・ ヨ ト ・ ヨ ト

Proving in Theorema

< ロ > < 同 > < 三 > < 三 >

Generated Proof and Proof Tree in Theorema

< D > < A > < B > < B >

Results

• A Theorema prover for proof-based algorithm synthesis and verification on lists using multisets.

This case study

- shows that, even though the algorithms are very well-known, proving the correctness is not trivial;
- the use of multisets is very important as it allows to express more easily the fact that two lists have the same elements;
- the techniques used lead to more efficient proofs, and simplify the proving process → in *Theorema* the proofs are generated in a few seconds and are easy to understand.

References

[9] Isabela Drămnesc, Tudor Jebelean, and Sorin Stratulat. **Certification of Tail Recursive Bubble-Sort in Theorema and Coq**. In LPAR 2024 Complementary Volume, volume 18 of Kalpa Publications in Computing, pages 53–68. EasyChair, 2024, Port Louis, Mauritius.

[10] Isabela Drămnesc, Tudor Jebelean, and Sorin Stratulat. **Certification of Sorting Algorithms using Theorema and Coq**. In Proc. of the 10th International Symposium on Symbolic Computation in Software Science (SCSS'24), volume 14991 of LNCS, pages 38–56. Springer, 2024, Tokyo, Japan.

[11] Isabela Drămnesc, Tudor Jebelean, and Sorin Stratulat. **Formal Certification of Synthesized Sorting Algorithms**. In Proc. of the 13th International Conference on Logic and Applications (LAP'24), 2024, Dubrovnik, Croatia (to appear).

[12] Isabela Drămnesc, Tudor Jebelean, and Sorin Stratulat. **Certification of Insert–Sort and Merge–Sort in Coq**. In Proc. of the 4th International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME'24), 2024, Male, Maldives (to appear).

< ロ > < 同 > < 三 > < 三 >

Theorema is a very nice automated theorem prover that can be used for both

- Teaching:
 - Automated Theorem Proving,
 - Algorithm Synthesis and Mathematical Theory Exploration.
- Research: algorithm synthesis and verification.

Ongoing and future work 1

- Verify robotic algorithms in *Theorema* (e.g. Dijkstra, A*, ...)
- Increase the automation of proving and of finding necessary lemmata in *Theorema*

¹Acknowledgements: This work is co-funded by the European Union through the Erasmus+ project AiRobo: Artificial Intelligence-based Robotics, 2023-1-RO01-KA220-HED-000152418, https://airobo.info.uvt.role = =

Thank you for your attention!

イロト イボト イヨト イヨト

æ