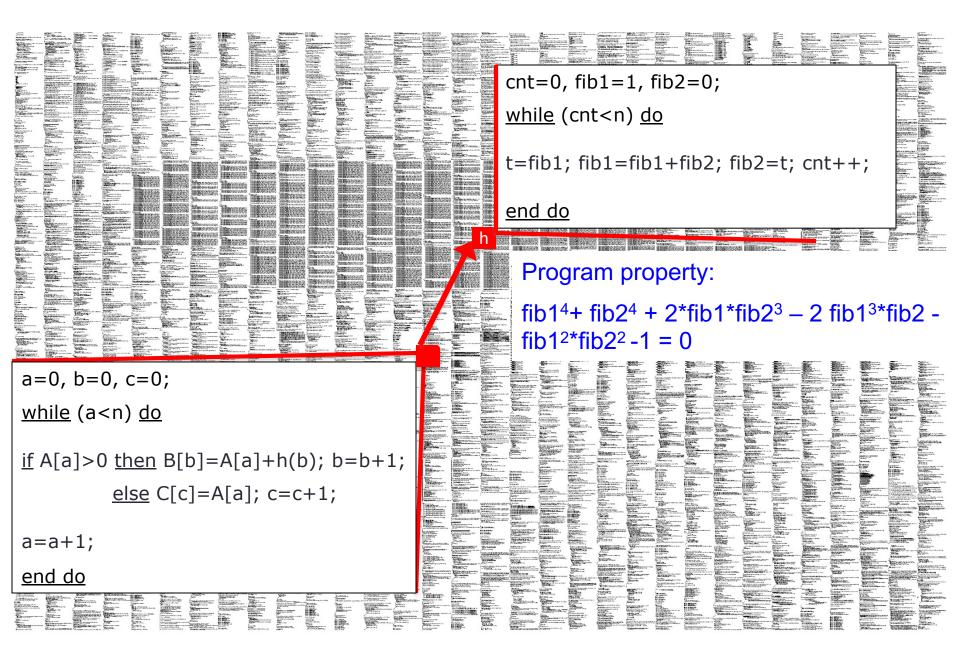
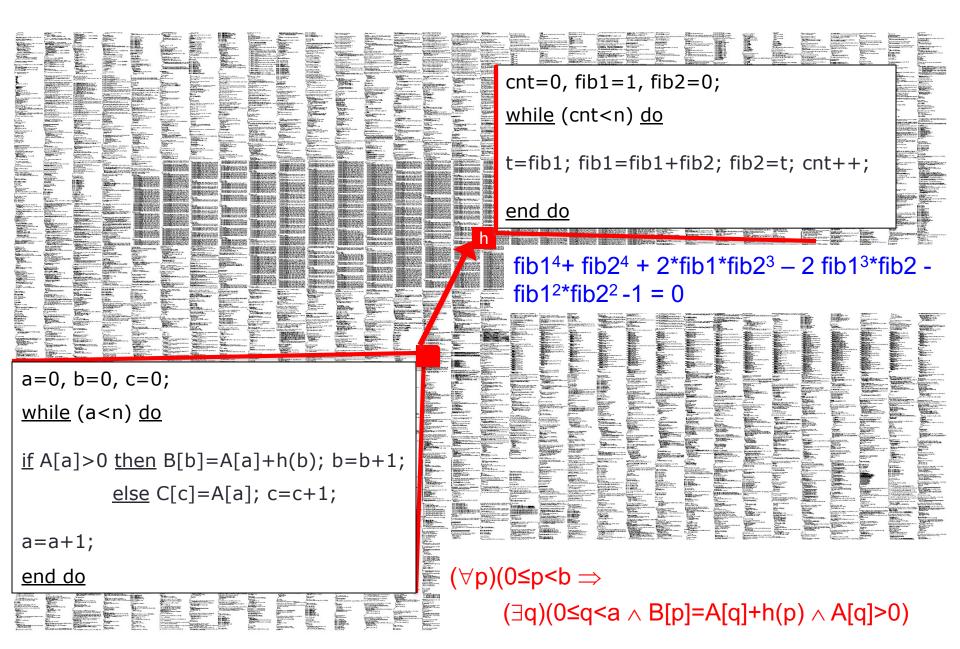

Laura Kovács




(ex. ~250kLoC, Vampire prover)

a=0, b=0, c=0;	
<u>while</u> (a <n) <u="">do</n)>	
<u>if</u> A[a]>0 <u>then</u> B[b]=A[a]+h(b); b=b+1; <u>else</u> C[c]=A[a]; c=c+1;	Image: state
a=a+1;	$ \begin{array}{ $
end do	Alterna Normality



First-Order Theorem Proving

My Research Group

Automated Program Reasoning - APRe

Loop Analysis

First-Order Theorem Proving

My Research Group

Automated Program Reasoning - APRe

erc

European Research Council Supporting top researchers from anywhere in the world

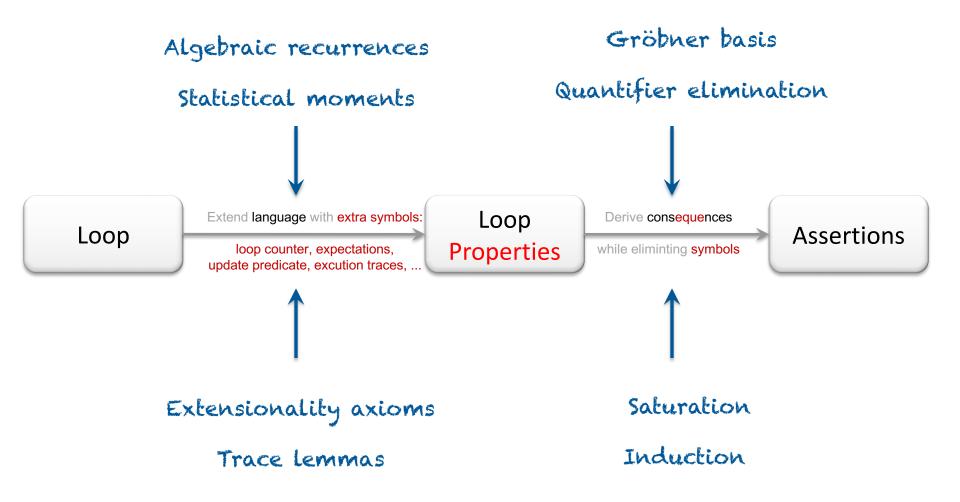
WWTF

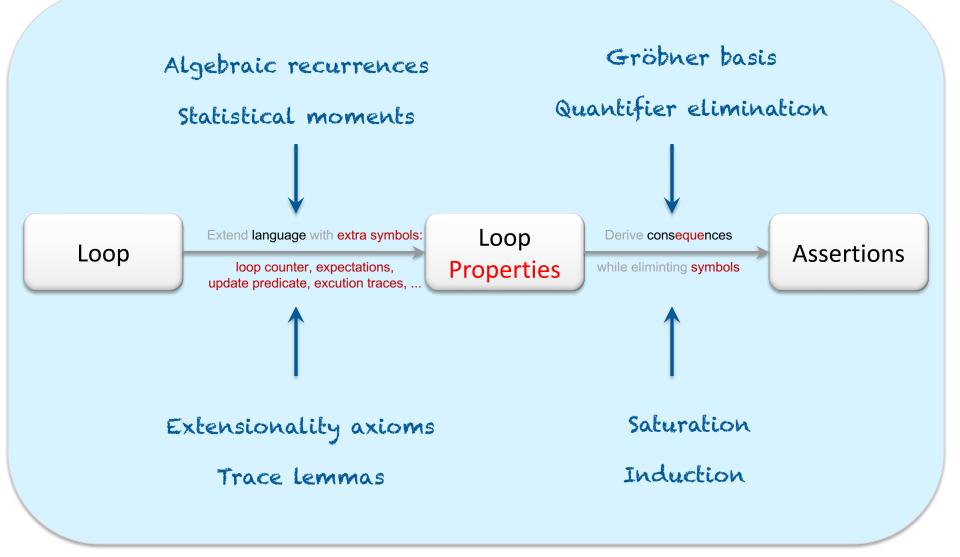
VIENNA SCIENCE AND TECHNOLOGY FUND

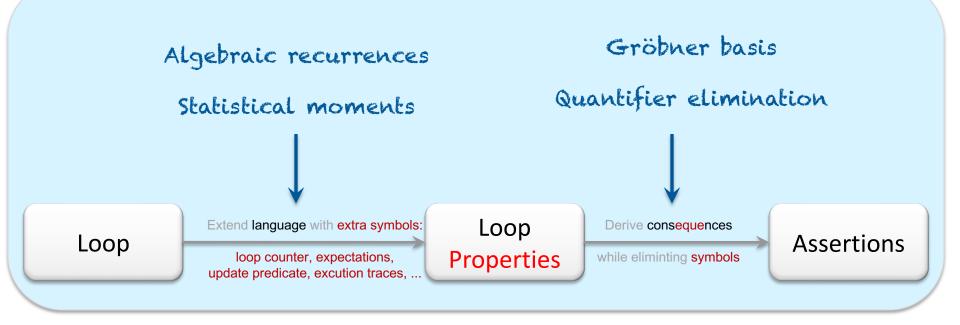
Program Analysis

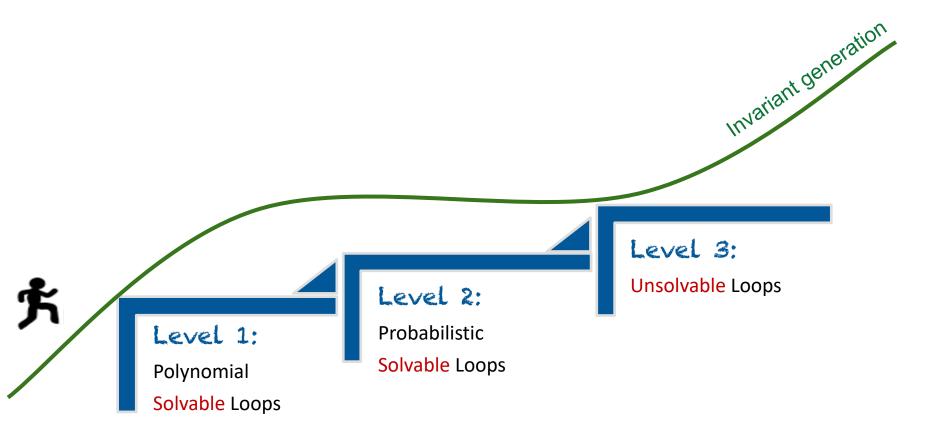
Loop

Assertions


Extend language with extra symbols:


loop counter, expectations, update predicate, excution traces, ...


Loop Properties


Assertions

Level 1: Polynomial Solvable Loops

x:=1; y:=0;
while ... do x:=2*x; y:=
$$\frac{1}{2}$$
*y+1 end do

Level 1: Polynomial Solvable Loops

x:=1; y:=0;
while ... do x:=2*x; y:=
$$\frac{1}{2}$$
*y+1 end do

<mark>n</mark>≥0

1. Express state from $(n+1)^{th}$ iteration in terms of the n^{th} iteration \rightarrow algebraic recurrences of loop variables

$$\begin{cases} x(n+1) = 2 * x(n) \\ y(n+1) = \frac{1}{2} * y(n) + 1 \end{cases}$$

Level 1: Polynomial Solvable Loops

x:=1; y:=0;
while ... do x:=2*x; y:=
$$\frac{1}{2}$$
*y+1 end do

<mark>n</mark>≥0

1. Express state from $(n+1)^{th}$ iteration in terms of the n^{th} iteration \rightarrow algebraic recurrences of loop variables

$$\begin{cases} x(n+1) = 2 * x(n) \\ y(n+1) = \frac{1}{2} * y(n) + 1 \end{cases}$$

2. Solve recurrences \rightarrow closed forms of loop variables

 $\begin{cases} x(n) = 2^n * x(0) \\ y(n) = \frac{1}{2^n} * y(0) - \frac{2}{2^n} + 2 \end{cases}$

Level 1: Polynomial Solvable Loops

x:=1; y:=0;
while ... do x:=2*x; y:=
$$\frac{1}{2}$$
*y+1 end do

n≥0, a=2ⁿ, b=2⁻ⁿ

- 1. Express state from $(n+1)^{th}$ iteration in terms of the n^{th} iteration \rightarrow algebraic recurrences of loop variables
- 2. Solve recurrences \rightarrow closed forms of loop variables
- 3. Derive algebraic dependencies among exponentials in n

$$\begin{cases} x(n) = 2^{n} * x(0) \\ y(n) = \frac{1}{2^{n}} * y(0) - \frac{2}{2^{n}} + 2 \end{cases}$$

 $\begin{cases} x(n+1) = 2 * x(n) \\ y(n+1) = \frac{1}{2} * y(n) + 1 \end{cases}$

$$\begin{cases} x(n) = a * x(0). \\ y(n) = b * y(0) - 2 * b + 2 \\ 0 = a * b - 1 = 2^n * \frac{1}{2^n} - 1 \end{cases}$$

Level 1: Polynomial Solvable Loops

x:=1; y:=0;
while ... do x:=2*x; y:=
$$\frac{1}{2}$$
*y+1 end do

n≥0, a=2ⁿ, b=2⁻ⁿ

- 1. Express state from $(n+1)^{th}$ iteration in terms of the nth iteration \rightarrow algebraic recurrences of loop variables
- 2. Solve recurrences \rightarrow closed forms of loop variables
- 3. Derive algebraic dependencies among exponentials in n

4. Eliminate expressions in n ← Gröbner basis computation

 $\begin{cases} x(n+1) = 2 * x(n) \\ y(n+1) = \frac{1}{2} * y(n) + 1 \end{cases}$

$$\begin{cases} x(n) = 2^n * x(0) \\ y(n) = \frac{1}{2^n} * y(0) - \frac{2}{2^n} + 2 \end{cases}$$

$$\begin{cases} x(n) = a * x(0). \\ y(n) = b * y(0) - 2 * b + 2 \\ 0 = a * b - 1 = 2^n * \frac{1}{2^n} - 1 \end{cases}$$

x * y - 2 * x + 2 = 0

Level 1: Polynomial Solvable Loops

x:=1; y:=0;
while ... do x:=2*x; y:=
$$\frac{1}{2}$$
*y+1 end do

n≥0, a=2ⁿ, b=2⁻ⁿ

- 1. Express state from $(n+1)^{th}$ iteration in terms of the nth iteration \rightarrow algebraic recurrences of loop variables
- 2. Solve recurrences \rightarrow closed forms of loop variables
- 3. Derive algebraic dependencies among exponentials in n

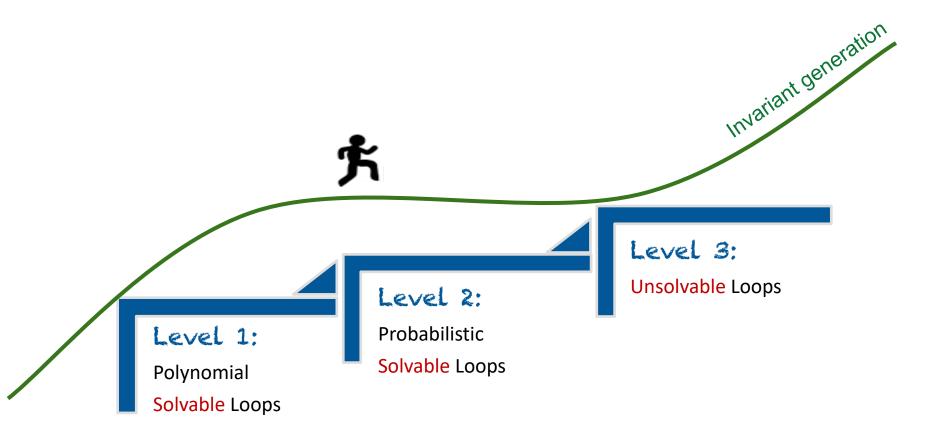
- 4. Eliminate expressions in n ← Gröbner basis computation
 - \rightarrow Finite basis of polynomial invariant ideal

$$\begin{cases} x(n+1) = 2 * x(n) \\ y(n+1) = \frac{1}{2} * y(n) + 1 \end{cases}$$

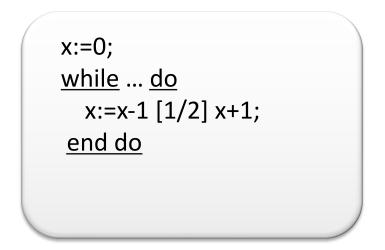
$$\begin{cases} x(n) = 2^{n} * x(0) \\ y(n) = \frac{1}{2^{n}} * y(0) - \frac{2}{2^{n}} + 2 \end{cases}$$

$$\begin{cases} x(n) = a * x(0). \\ y(n) = b * y(0) - 2 * b + 2 \\ 0 = a * b - 1 = 2^{n} * \frac{1}{2^{n}} - 1 \end{cases}$$

x * y - 2 * x + 2 = 0

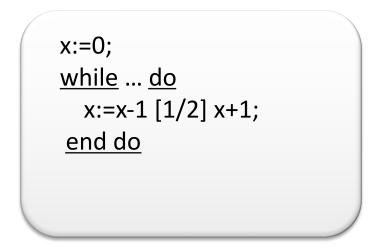

Level 1: Polynomial Solvable Loops

joint work w A. Humenberger, M. Jaroschek, A. Varonka (ISSAC17, VMCAI18, RAMICS23)

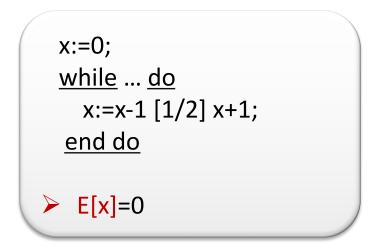

- Loops with polynomial assignments and nested conditionals
 - Structural constraints on assignments with polynomial rhs
 C-finite recurrences of loop variables
 - > Tests are ignored \rightarrow non-deterministic programs

Automation via symbolic summation and Gröbner basis computation
 ALIGATOR tool
 https://ahumenberger.github.io/aligator/

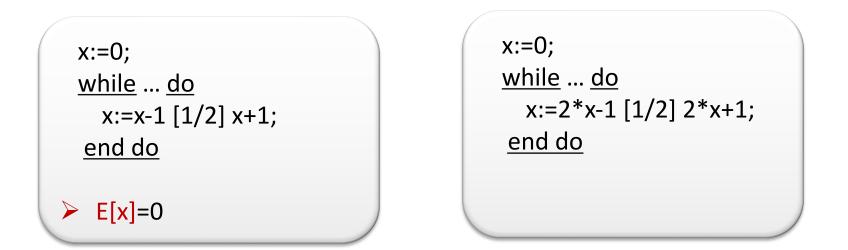
Further applications: loop termination, synthesis, deductive verification



Level 2: Probabilistic Solvable Loops

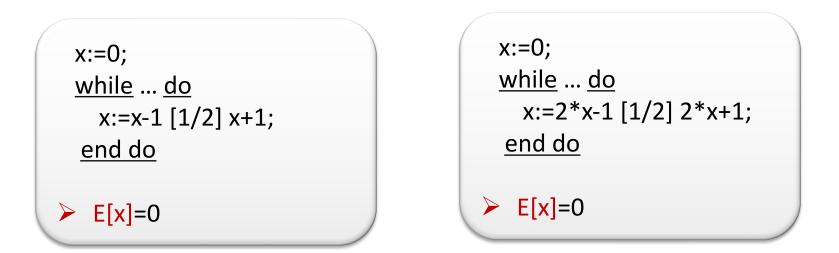

What is the behaviour of a probabilistic loop?

Level 2: Probabilistic Solvable Loops


- What is the behaviour of a probabilistic loop?
- What is the expected value of a loop variable, e.g. x?

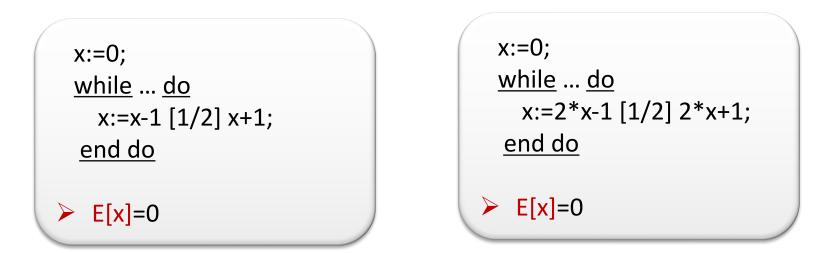
Level 2: Probabilistic Solvable Loops

- What is the behaviour of a probabilistic loop?
- What is the expected value of a loop variable, e.g. x?


Level 2: Probabilistic Solvable Loops

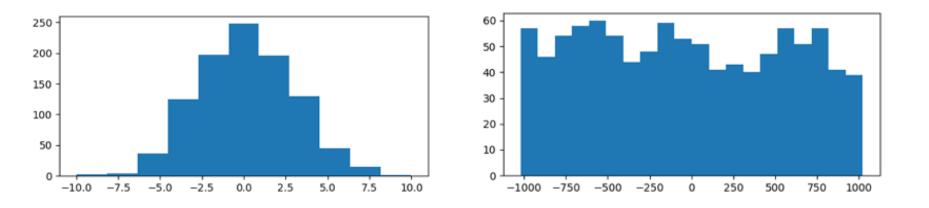
What is the behaviour of a probabilistic loop?

What is the expected value of a loop variable, e.g. x?

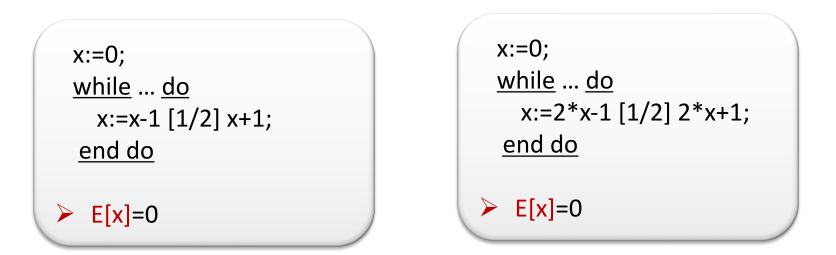

Level 2: Probabilistic Solvable Loops

What is the behaviour of a probabilistic loop?

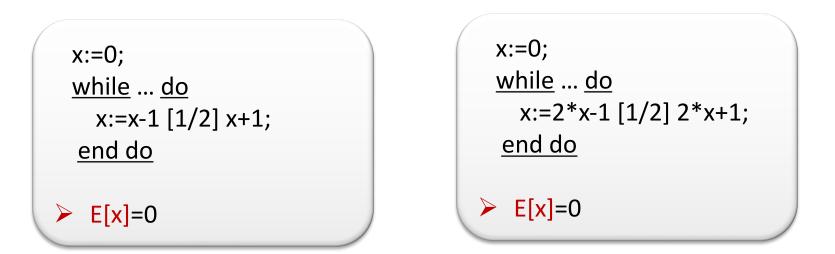
What is the expected value of a loop variable, e.g. x?


Level 2: Probabilistic Solvable Loops

What is the behaviour of a probabilistic loop?

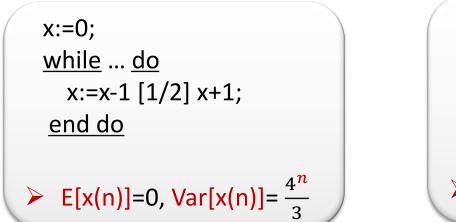

- What is the expected value of a loop variable, e.g. x?
- In both programs above, the expected value of x is the same. Yet, the programs are not the same!

- What is the behaviour of a probabilistic loop?
- What is the expected value of a loop variable, e.g. x?
- In both programs above, the expected value of x is the same. Yet, the programs are not the same!


Level 2: Probabilistic Solvable Loops

What is the behaviour of a probabilistic loop?

Can we characterize/recover the value distribution of loop variables?

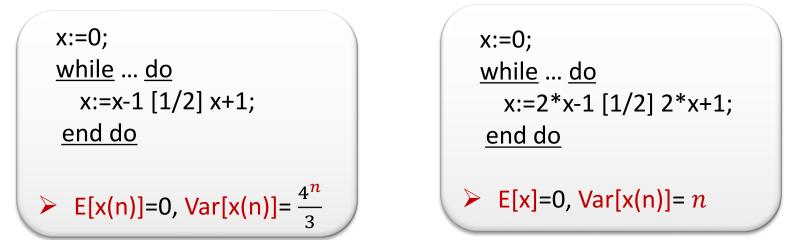

Level 2: Probabilistic Solvable Loops

What is the behaviour of a probabilistic loop?

Can we characterize/recover the value distribution of loop variables? Reason about higher-order statistical moments of variables!

Level 2: Probabilistic Solvable Loops

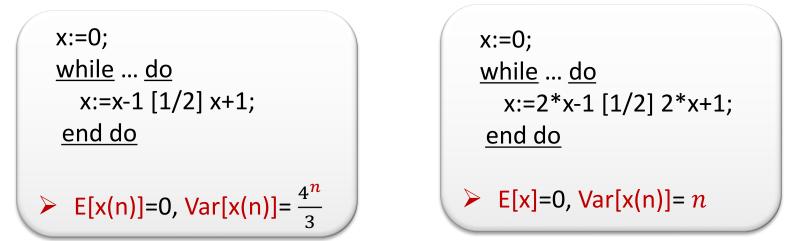
x:=0; <u>while</u> ... <u>do</u> x:=2*x-1 [1/2] 2*x+1; <u>end do</u>


E[x]=0, Var[x(n)]= n

What is the behaviour of a probabilistic loop?

Can we characterize/recover the value distribution of loop variables? Reason about higher-order statistical moments of variables!

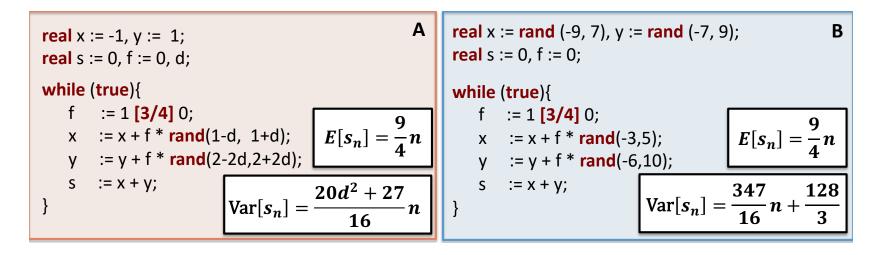
Level 2: Probabilistic Solvable Loops


joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

DEFINITION 14 (MOMENT-COMPUTABILITY). A probabilistic loop \mathcal{P} is moment-computable if a closed-form of $\mathbb{E}(x_n^k)$ exists and is computable for all $x \in Vars(\mathcal{P})$ and $k \in \mathbb{N}$.

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)



DEFINITION 14 (MOMENT-COMPUTABILITY). A probabilistic loop \mathcal{P} is moment-computable if a closed-form of $\mathbb{E}(x_n^k)$ exists and is computable for all $x \in Vars(\mathcal{P})$ and $k \in \mathbb{N}$.

Theorem 6 (Moment-Computability). A probabilistic loop \mathcal{P} is moment-computable if (1) none of its non-finite variables depends on itself polynomially, and (2) if the variables in all if-conditions are finite.

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

- Parametrized distributions
- ➢ Random polynomial assignments → C-finite recurrences over moments
- Finite-valued multi-path conditions
- \rightarrow Higher-order moments of loop variables are computable.

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

e.g. s^2

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

Expected values of monomials
 sufficient to understand E-variables
 E[*X*], *E*[*X*²], *E*[*XY*], ...

Probabilistic updates:

 $x_i = a_i x_i + P_i(x_1, \dots, x_{i-1}) [p_i] b_i x_i + Q_i(x_1, \dots, x_{i-1})$

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

f, x, y, s = 0, -1, 1, 0 while (true): Expected values of monomials f = 1 [3/4] 0- sufficient to understand E-variables x = x + f*rand(1-d, 1+d) $E[X], E[X^2], E[XY], ...$ $\sqrt{y} = y + f^* rand(2-2d, 2+2d)$ s = x + y**Probabilistic updates:** $x_i = a_i x_i + P_i(x_1, \dots, x_{i-1}) [p_i] b_i x_i + Q_i(x_1, \dots, x_{i-1})$ Stochastic recurrences over E-variables: $E[x_i(n+1)] = p_i \cdot E[a_i x_i(n) + P_i(x_1(n), \dots, x_{i-1}(n))]$ $+(1-p_i) \cdot E[b_i x_i(n) + Q_i(x_1(n), \dots, x_{i-1}(n))].$

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

Expected values of monomials
 sufficient to understand E-variables
 E[*X*], *E*[*X*²], *E*[*XY*], ...

• Computing with E-variables E[c] = c E[X + cY] = E[X] + cE[Y] $E[X \cdot Y] \neq E[X] \cdot E[Y]$ unless X, Y are independent

Stochastic recurrences over E-variables:

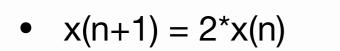
$$E[x_i(n+1)] = p_i \cdot E[a_i x_i(n) + P_i(x_1(n), \dots, x_{i-1}(n))] + (1-p_i) \cdot E[b_i x_i(n) + Q_i(x_1(n), \dots, x_{i-1}(n))]$$

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

Expected values of monomials
 necessary to understand E-variables
 E[*X*], *E*[*X*²], *E*[*XY*], ...

• Computing with E-variables E[c] = c E[X + cY] = E[X] + cE[Y] $E[X \cdot Y] \neq E[X] \cdot E[Y]$ unless X, Y are independent


Expected values of monomials cannot be simplified

Stochastic recurrences over E-variables:

$$E[x_i(n+1)] = p_i \cdot E[a_i x_i(n) + P_i(x_1(n), \dots, x_{i-1}(n))] + (1-p_i) \cdot E[b_i x_i(n) + Q_i(x_1(n), \dots, x_{i-1}(n))]$$

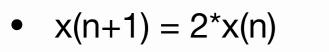
Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

• x(n+1) = x(n) + unif(0,1)

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

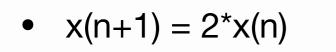

- $x(n+1) = 2^*x(n)$
- x(n+1) = x(n) + unif(0,1)

Level 1

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

. . .


• x(n+1) = x(n) + unif(0,1)

-use moments: treat each moment as a separate E-variable

• E[x(n+1)] = E[x(n)] + 1/2 $E[x^2(n+1)] = E[x^2(n)] + ...$ $E[x^3(n+1)] = ...$

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

• x(n+1) = x(n) + unif(0,1)

-use moments: treat each moment as a separate E-variable

• E[x(n+1)] = E[x(n)] + 1/2 $E[x^2(n+1)] = E[x^2(n)] + ...$ $E[x^3(n+1)] = ...$

-solve stochastic recurrences: closed forms over E-variables

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

1. Set S := goal

- 3. Pick an E-variable from S
- 4. Get recurrence over E-variables
- 5. Add new E-variables to S
- 6. Solve the system of recurrences
- 7. Compute moment-based invariants

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

1. Set S := goal

 $\{s^2\}$

- 3. Pick an E-variable from S
- 4. Get recurrence over E-variables
- 5. Add new E-variables to S
- 6. Solve the system of recurrences
- 7. Compute moment-based invariants

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

1. Set S := goal

- 3. Pick an E-variable from S
- 4. Get recurrence over E-variables
- 5. Add new E-variables to S
- 6. Solve the system of recurrences
- 7. Compute moment-based invariants

$$\{s^2\} \rightarrow s^2$$

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

Set S := goal
 While S is not empty:
 Pick an E-variable from S
 Get recurrence over E-variables
 Add new E-variables to S
 Solve the system of recurrences
 Compute moment-based invariants

goal: $\{s^2\}$

$$\{s^2\} \rightarrow s^2 \rightarrow E[s^2(n+1)] = E[(x(n+1) + y(n+1))^2]$$

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

Set S := goal
 While S is not empty:
 Pick an E-variable from S
 Get recurrence over E-variables
 Add new E-variables to S
 Solve the system of recurrences
 Compute moment-based invariants

goal: {s^2}

 $\{s^2\} \to s^2 \to E[s^2(n+1)] = E[(x(n+1) + y(n+1))^2]$ $\to E[s^2(n+1)] = E[x^2(n+1)] + 2E[xy(n+1)] + E[y^2(n+1)]$

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

Set S := goal
 While S is not empty:
 Pick an E-variable from S
 Get recurrence over E-variables
 Add new E-variables to S
 Solve the system of recurrences
 Compute moment-based invariants

goal: {s^2}

$$\{s^2\} \to s^2 \to E[s^2(n+1)] = E[(x(n+1) + y(n+1))^2]$$

$$\to E[s^2(n+1)] = E[x^2(n+1)] + 2E[xy(n+1)] + E[y^2(n+1)]$$

$$\to S = \{x^2, xy, y^2\}$$

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

1. Set S := goal

 $\rightarrow x^2$

- 3. Pick an E-variable from S
- 4. Get recurrence over E-variables
- 5. Add new E-variables to S
- 6. Solve the system of recurrences
- 7. Compute moment-based invariants

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

1. Set S := goal	f, x, while	У,
2. While S is not empty:		
3. Pick an E-variable from S	f = x =	
4. Get recurrence over E-variables	y =	
5. Add new E-variables to S	s =	Х
6. Solve the system of recurrences		
7. Compute moment-based invariants	goal:	{ S

 $\rightarrow \chi^2 \rightarrow E[x^2(n+1)] = E[(x(n) + f(n+1) \cdot rand(1 - d, 1 + d))^2]$

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

1. Set S := goal	f, x,	y, s =
2. While S is not empty:	while	y, s = (true) 1 [3/4
3. Pick an E-variable from S	x =	⊥ [3/2 x + f[*]
4. Get recurrence over E-variables	y =	y + f'
5. Add new E-variables to S	S =	x + y
6. Solve the system of recurrences		
7. Compute moment-based invariants	goal:	{s^2}

 $\rightarrow \chi^2 \rightarrow E[x^2(n+1)] = E[(x(n) + f(n+1) \cdot rand(1 - d, 1 + d))^2]$ $\rightarrow E[x^2(n+1)] = E[x^2(n)] + 2E[x(n)]E[f(n+1)]] + E[(f(n+1))^2](1 + \frac{d^2}{3})$

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

1. Set S := goal	f, x, y, s = 0, -1, 1, 0
2. While S is not empty:	while (true):
3. Pick an E-variable from S	<pre>f = 1 [3/4] 0 x = x + f*rand(1-d, 1+d)</pre>
4. Get recurrence over E-variables	y = y + f*rand(2-2d, 2+2d)
5. Add new E-variables to S	s = x + y
6. Solve the system of recurrences	
7. Compute moment-based invariants	goal: {s^2}

$$\chi^{2} \rightarrow E[x^{2}(n+1)] = E[(x(n) + f(n+1) \cdot rand(1 - d, 1 + d))^{2}]$$

$$E[x^{2}(n+1)] = E[x^{2}(n)] + 2E[x(n)]E[f(n+1)]] + E[(f(n+1))^{2}](1 + \frac{d^{2}}{3})^{2}$$

$$S = \{xy, y^{2}, x, f, f^{2}\}$$

Level 2: Probabilistic Solvable Loops

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

1. Set S := goal	f, x, y, s = 0, -1 , 1, 0
2. While S is not empty:	while (true): f = 1 [3/4] 0
3. Pick an E-variable from S	$x = x + f^{rand}(1-d, 1+d)$
4. Get recurrence over E-variables	y = y + f*rand(2-2d, 2+2d)
5. Add new E-variables to S	s = x + y
6. Solve the system of recurrences	(a^2)
7. Compute moment-based invariants	goal: {s^2}

$$\rightarrow \chi^2 \rightarrow E[x^2(n+1)] = E[(x(n) + f(n+1) \cdot rand(1 - d, 1 + d))^2]$$

$$\rightarrow E[x^2(n+1)] = E[x^2(n)] + 2E[x(n)]E[f(n+1)]] + E[(f(n+1))^2](1 + \frac{d^2}{3})$$

$$\rightarrow S = \{xy, y^2, x, f, f^2\}$$

...and so on ...

Level 2: Probabilistic Solvable Loops

. . .

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

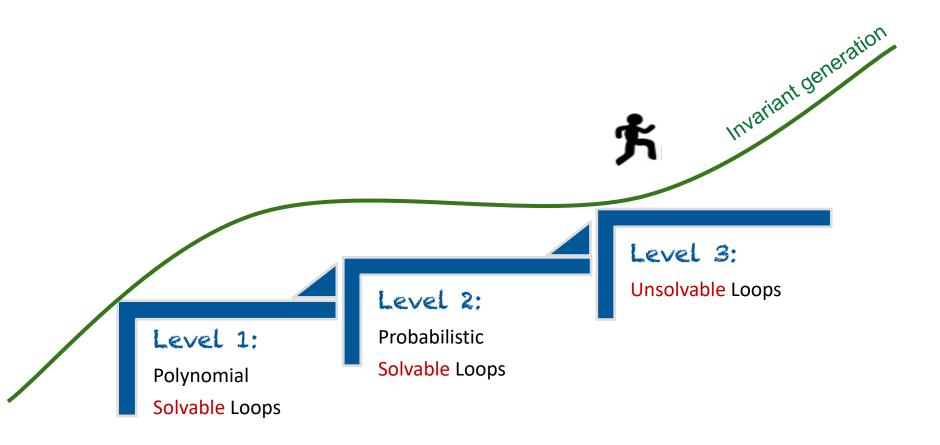
$$E[f(n+1)] = \frac{3}{4}$$

$$E[x(n+1)] = E[x(n)] + \frac{3}{4}E[f(n+1)]$$

$$E[y(n+1)] = E[y(n)] + \frac{3}{2}E[f(n+1)]$$

$$E[s(n+1)] = E[x(n+1)] + E[y(n+1)]$$

 $E[s(n+1)^2] = E[x(n+1)^2] + 2 \cdot E[(xy)(n+1)] + E[y(n+1)^2]$


Level 2: Probabilistic Solvable Loops

joint work w A. Humenberger, M. Jaroschek, A. Varonka (ISSAC17,VMCAI18,RAMICS18)

Level 1 + Random polynomial assignments + finite-valued conditions

- C-finite recurrences of E-variables
- Tests are finite-valued

- Automation via symbolic summation and moment-based computation
 POLAR tool
 https://github.com/probing-lab/polar
- > Further applications: probabilistic termination, sensitivity, probabilistic inferences

Level 3: Unsolvable Loops

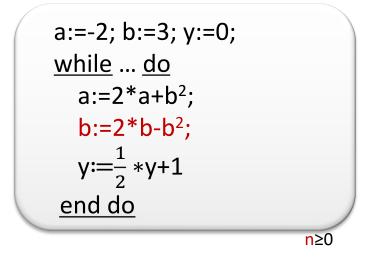
a:=-2; b:=3; y:=0;
while ... do
a:=2*a+b²;
b:=2*b-b²;
y:=
$$\frac{1}{2}$$
*y+1
end do

Level 3: Unsolvable Loops

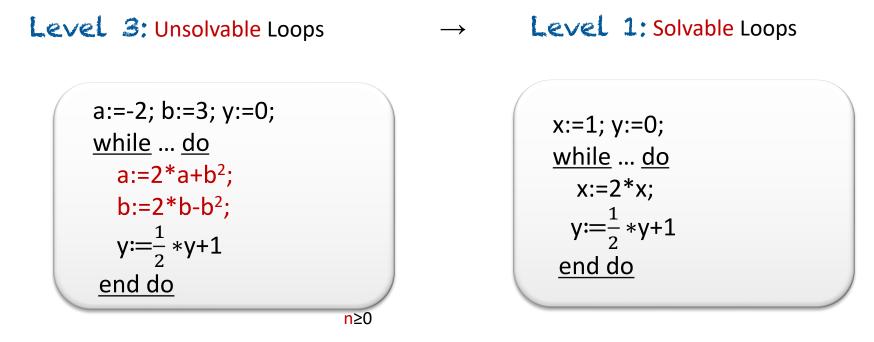
```
a:=-2; b:=3; y:=0;

<u>while</u> ... <u>do</u>

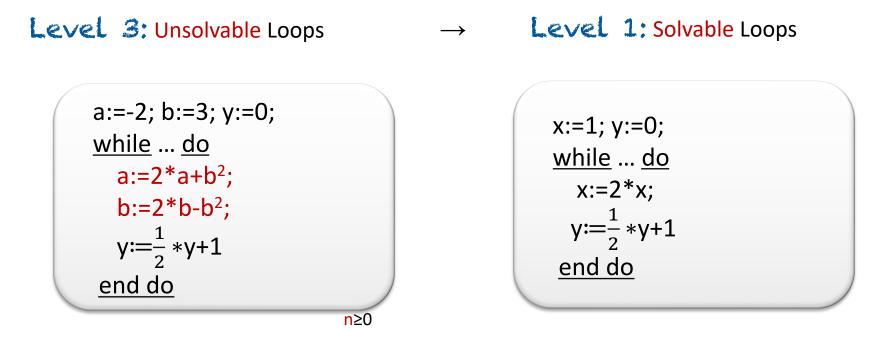
a:=2*a+b<sup>2</sup>;


b:=2*b-b<sup>2</sup>;

y:=\frac{1}{2}*y+1


<u>end do</u>
```

> Polynomial updates \rightarrow non-C-finite recurrences Level 1 and Level 2 \otimes


Level 3: Unsolvable Loops

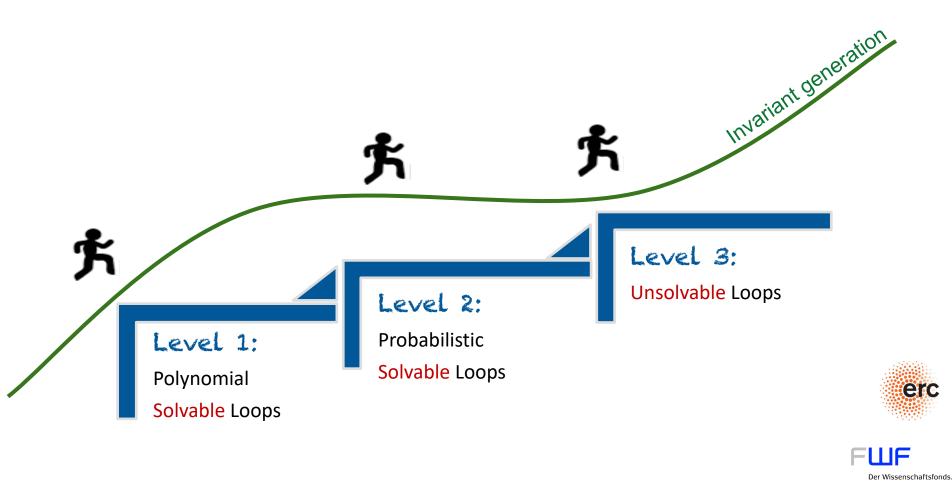
- > Polynomial updates \rightarrow non-C-finite recurrences Level 1 and Level 2 \otimes
- > Yet, x(n)=a(n)+b(n) satisfy a C-finite recurrence: $a(n+1)+b(n+1)=2^*(a(n)+b(n))$

- > Polynomial updates \rightarrow non-C-finite recurrences Level 1 and Level 2 \otimes
- > Yet, x(n)=a(n)+b(n) satisfy a C-finite recurrence: $a(n+1)+b(n+1)=2^*(a(n)+b(n))$
- > Unsolvable loop over a, b, y \rightarrow Solvable loop over x, y Level 1 \checkmark

- > Polynomial updates \rightarrow non-C-finite recurrences Level 1 and Level 2 \otimes
- > Yet, x(n)=a(n)+b(n) satisfy a C-finite recurrence: $a(n+1)+b(n+1)=2^*(a(n)+b(n))$
- ➤ Unsolvable loop over a, b, y → Solvable loop over x, y
 Level 1 ✓
 Invariant: $(a+b)^*y-2^*(a+b)+2=0 \leftarrow x^*y-2^*x+2=0$

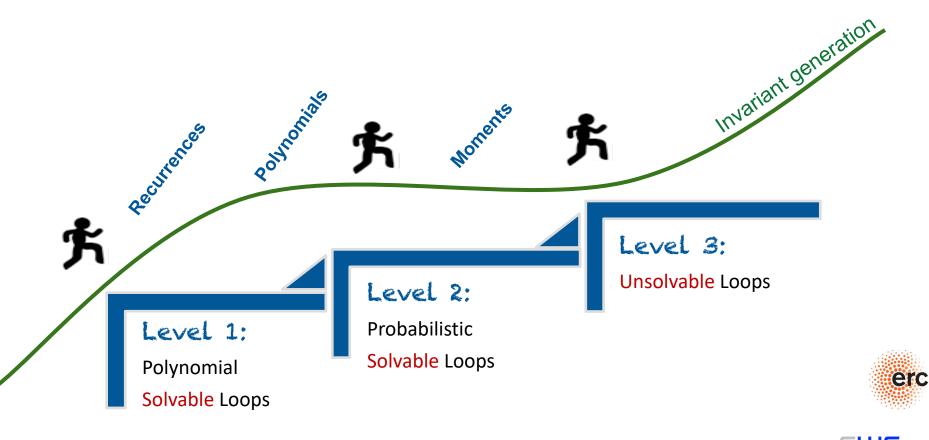
Level 3: Unsolvable Loops

\rightarrow Level 1 or Level 2: Solvable Loops


joint work w D. Amrollahi, E. Bartocci, G. Kenison, M. Stankovic, M. Moosbrugger (SAS22)

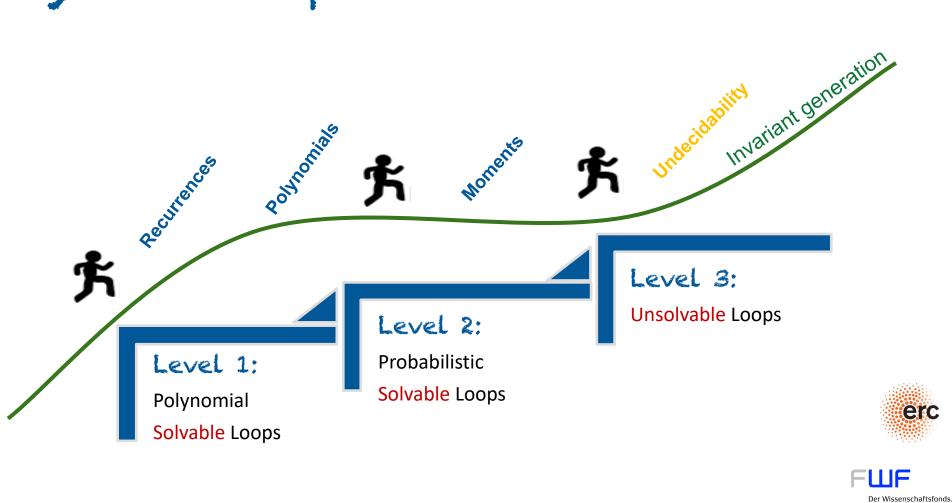
Level 1 or Level 2 + non-C-finite recurrences

Compute polynomial relations P over variables with non C-finite recurrences

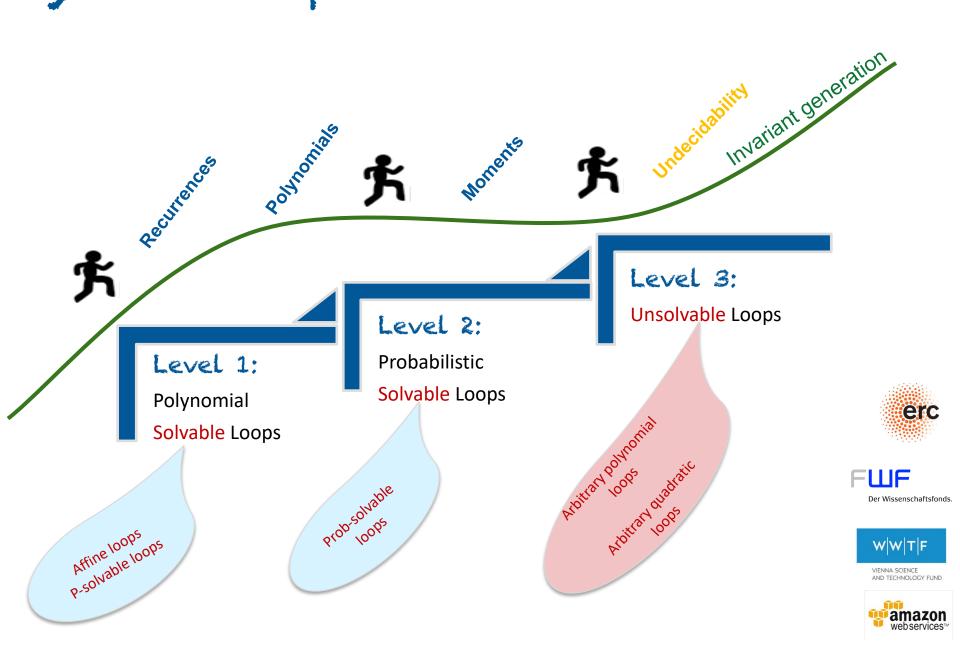

If P is C-finite expression, use P to solve unsolvable loops

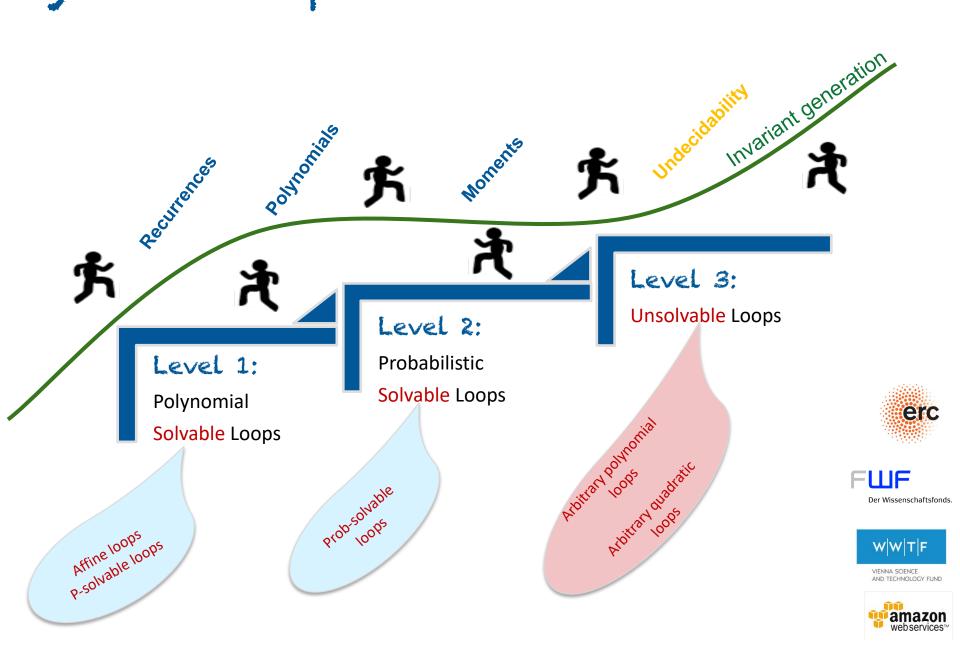
Automation via variable dependency analysis and polynomial constraint solving
 POLAR tool
 https://github.com/probing-lab/polar

amazon webservices**



FUF Der Wissenschaftsfonds.


VIENNA SCIENCE AND TECHNOLOGY FUND



vebservices™

VIENNA SCIENCE AND TECHNOLOGY FUND

