
Chalmers

Symbolic Computation
in

Automated Program Reasoning
Automating Induction in Saturation-Based Proof Search

Laura Kovács

Automating Inductive Reasoning for Program Analysis

Chalmers

Chalmers

Laura Kovács

Automating Program Reasoning

Chalmers

Chalmers

Laura Kovács

Automating Program Reasoning
(ex. ~250kLoC, Vampire prover)

Chalmers

Chalmers

Laura Kovács

a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); b=b+1;

else C[c]=A[a]; c=c+1;

a=a+1;

end do

Automating Program Reasoning

Chalmers

Chalmers

Laura Kovács

a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); b=b+1;

else C[c]=A[a]; c=c+1;

a=a+1;

end do

Program property:

("p)(0≤p<b Þ
($q)(0≤q<a Ù B[p]=A[q]+h(p) Ù A[q]>0)

Automating Program Reasoning

Chalmers

Chalmers

Laura Kovács

a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); b=b+1;

else C[c]=A[a]; c=c+1;

a=a+1;

end do

cnt=0, fib1=1, fib2=0;

while (cnt<n) do

t=fib1; fib1=fib1+fib2; fib2=t; cnt++;

end do
h

Automating Program Reasoning

Chalmers

Chalmers

Laura Kovács

a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); b=b+1;

else C[c]=A[a]; c=c+1;

a=a+1;

end do

cnt=0, fib1=1, fib2=0;

while (cnt<n) do

t=fib1; fib1=fib1+fib2; fib2=t; cnt++;

end do
h

Program property:

fib14+ fib24 + 2*fib1*fib23 – 2 fib13*fib2 -
fib12*fib22 -1 = 0

Automating Program Reasoning

Chalmers

Chalmers

Laura Kovács

a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); b=b+1;

else C[c]=A[a]; c=c+1;

a=a+1;

end do

cnt=0, fib1=1, fib2=0;

while (cnt<n) do

t=fib1; fib1=fib1+fib2; fib2=t; cnt++;

end do
h

fib14+ fib24 + 2*fib1*fib23 – 2 fib13*fib2 -
fib12*fib22 -1 = 0

("p)(0≤p<b Þ
($q)(0≤q<a Ù B[p]=A[q]+h(p) Ù A[q]>0)

Automating Program Reasoning

Chalmers

Chalmers

Laura Kovács

Computer
Algebra

First-Order
Theorem Proving

Loop Analysis

My Research Group
Automated Program Reasoning - APRe

Chalmers

Chalmers

Laura Kovács

Computer
Algebra

First-Order
Theorem Proving

Program Analysis

My Research Group
Automated Program Reasoning - APRe

Chalmers

Chalmers

Laura Kovács

Our Recipe in Automated Program Reasoning

Chalmers

Chalmers

Laura Kovács

Our Recipe in Automated Program Reasoning

Loop Assertions

Chalmers

Chalmers

Laura Kovács

Our Recipe in Automated Program Reasoning

Loop AssertionsLoop
Properties

Extend language with extra symbols:

loop counter, expectations,
update predicate, excution traces, ...

Chalmers

Chalmers

Laura Kovács

Our Recipe in Automated Program Reasoning

Loop AssertionsLoop
Properties

Extend language with extra symbols:

loop counter, expectations,
update predicate, excution traces, ...

Derive consequences

while eliminting symbols

Chalmers

Chalmers

Laura Kovács

Our Recipe in Automated Program Reasoning

Loop AssertionsLoop
Properties

Extend language with extra symbols:

loop counter, expectations,
update predicate, excution traces, ...

Derive consequences

while eliminting symbols

Algebraic recurrences

Statistical moments

Extensionality axioms

Trace lemmas

Gröbner basis

Quantifier elimination

Saturation

Induction

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Loop AssertionsLoop
Properties

Extend language with extra symbols:

loop counter, expectations,
update predicate, excution traces, ...

Derive consequences

while eliminting symbols

Algebraic recurrences

Statistical moments

Extensionality axioms

Trace lemmas

Gröbner basis

Quantifier elimination

Saturation

Induction

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Loop AssertionsLoop
Properties

Extend language with extra symbols:

loop counter, expectations,
update predicate, excution traces, ...

Derive consequences

while eliminting symbols

Algebraic recurrences

Statistical moments

Gröbner basis

Quantifier elimination

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 1:
Polynomial
Solvable Loops

Level 2:
Probabilistic
Solvable Loops

Level 3:
Unsolvable Loops

Invariant generation

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 1: Polynomial Solvable Loops

x:=1; y:=0;
while … do x:=2*x; y≔!

"
∗y+1 end do

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 1: Polynomial Solvable Loops

x:=1; y:=0;
while … do x:=2*x; y≔!

"
∗y+1 end do

1. Express state from (n+1)th iteration in terms of the
nth iteration → algebraic recurrences of loop variables

n≥0, a=2n, b=2-n

!
𝑥 𝑛 + 1 = 2 ∗ 𝑥 𝑛

𝑦 𝑛 + 1 =
1
2
∗ 𝑦 𝑛 + 1

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 1: Polynomial Solvable Loops

x:=1; y:=0;
while … do x:=2*x; y≔!

"
∗y+1 end do

1. Express state from (n+1)th iteration in terms of the
nth iteration → algebraic recurrences of loop variables

2. Solve recurrences → closed forms of loop variables

!
𝑥 𝑛 + 1 = 2 ∗ 𝑥 𝑛

𝑦 𝑛 + 1 =
1
2
∗ 𝑦 𝑛 + 1

!
𝑥 𝑛 = 2! ∗ 𝑥 0

𝑦 𝑛 =
1
2!
∗ 𝑦 0 −

2
2!
+ 2

n≥0, a=2n, b=2-n

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 1: Polynomial Solvable Loops

x:=1; y:=0;
while … do x:=2*x; y≔!

"
∗y+1 end do

1. Express state from (n+1)th iteration in terms of the
nth iteration → algebraic recurrences of loop variables

2. Solve recurrences → closed forms of loop variables

3. Derive algebraic dependencies among exponentials in n

n≥0, a=2n, b=2-n

!
𝑥 𝑛 + 1 = 2 ∗ 𝑥 𝑛

𝑦 𝑛 + 1 =
1
2
∗ 𝑦 𝑛 + 1

!
𝑥 𝑛 = 2! ∗ 𝑥 0

𝑦 𝑛 =
1
2!
∗ 𝑦 0 −

2
2!
+ 2

𝑥 𝑛 = 𝑎 ∗ 𝑥 0 .
𝑦 𝑛 = 𝑏 ∗ 𝑦 0 − 2 ∗ 𝑏 + 2

0 = 𝑎 ∗ 𝑏 − 1 = 2! ∗
1
2!
− 1

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 1: Polynomial Solvable Loops

x:=1; y:=0;
while … do x:=2*x; y≔!

"
∗y+1 end do

1. Express state from (n+1)th iteration in terms of the
nth iteration → algebraic recurrences of loop variables

2. Solve recurrences → closed forms of loop variables

3. Derive algebraic dependencies among exponentials in n

4. Eliminate expressions in n ← Gröbner basis computation

n≥0, a=2n, b=2-n

!
𝑥 𝑛 + 1 = 2 ∗ 𝑥 𝑛

𝑦 𝑛 + 1 =
1
2
∗ 𝑦 𝑛 + 1

!
𝑥 𝑛 = 2! ∗ 𝑥 0

𝑦 𝑛 =
1
2!
∗ 𝑦 0 −

2
2!
+ 2

𝑥 𝑛 = 𝑎 ∗ 𝑥 0 .
𝑦 𝑛 = 𝑏 ∗ 𝑦 0 − 2 ∗ 𝑏 + 2

0 = 𝑎 ∗ 𝑏 − 1 = 2! ∗
1
2!
− 1

𝑥 ∗ 𝑦 − 2 ∗ 𝑥 + 2 = 0

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 1: Polynomial Solvable Loops

x:=1; y:=0;
while … do x:=2*x; y≔!

"
∗y+1 end do

1. Express state from (n+1)th iteration in terms of the
nth iteration → algebraic recurrences of loop variables

2. Solve recurrences → closed forms of loop variables

3. Derive algebraic dependencies among exponentials in n

→ Finite basis of polynomial invariant ideal

n≥0, a=2n, b=2-n

!
𝑥 𝑛 + 1 = 2 ∗ 𝑥 𝑛

𝑦 𝑛 + 1 =
1
2
∗ 𝑦 𝑛 + 1

!
𝑥 𝑛 = 2! ∗ 𝑥 0

𝑦 𝑛 =
1
2!
∗ 𝑦 0 −

2
2!
+ 2

𝑥 𝑛 = 𝑎 ∗ 𝑥 0 .
𝑦 𝑛 = 𝑏 ∗ 𝑦 0 − 2 ∗ 𝑏 + 2

0 = 𝑎 ∗ 𝑏 − 1 = 2! ∗
1
2!
− 1

4. Eliminate expressions in n ← Gröbner basis computation 𝑥 ∗ 𝑦 − 2 ∗ 𝑥 + 2 = 0

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 1: Polynomial Solvable Loops

Ø Loops with polynomial assignments and nested conditionals

Ø Structural constraints on assignments with polynomial rhs
← C-finite recurrences of loop variables

Ø Tests are ignored → non-deterministic programs

Ø Automation via symbolic summation and Gröbner basis computation
Ø ALIGATOR tool https://ahumenberger.github.io/aligator/

Ø Further applications: loop termination, synthesis, deductive verification

joint work w A. Humenberger, M. Jaroschek, A. Varonka (ISSAC17,VMCAI18,RAMICS23)

Chalmers

Level 1:
Polynomial
Solvable Loops

Level 2:
Probabilistic
Solvable Loops

Level 3:
Unsolvable Loops

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Invariant generation

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 2: Probabilistic Solvable Loops

x:=0;
while … do

x:=x-1 [1/2] x+1;
end do

Ø What is the behaviour of a probabilistic loop?

Ø What is the expected value of a loop varaiaable, e.g. x?

Ø In both programs above, the expected value of x is the same.

Yet, the programs are not the same!

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 2: Probabilistic Solvable Loops

x:=0;
while … do

x:=x-1 [1/2] x+1;
end do

Ø What is the behaviour of a probabilistic loop?

Ø What is the expected value of a loop variable, e.g. x?

Ø In both programs above, the expected value of x is the same.

Yet, the programs are not the same!

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 2: Probabilistic Solvable Loops

x:=0;
while … do

x:=x-1 [1/2] x+1;
end do

Ø E[x]=0

Ø What is the behaviour of a probabilistic loop?

Ø What is the expected value of a loop variable, e.g. x?

Ø In both programs above, the expected value of x is the same.

Yet, the programs are not the same!

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 2: Probabilistic Solvable Loops

x:=0;
while … do

x:=x-1 [1/2] x+1;
end do

Ø E[x]=0

Ø What is the behaviour of a probabilistic loop?

Ø What is the expected value of a loop variable, e.g. x?

Ø In both programs above, the expected value of x is the same.

Yet, the programs are not the same!

x:=0;
while … do

x:=2*x-1 [1/2] 2*x+1;
end do

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 2: Probabilistic Solvable Loops

x:=0;
while … do

x:=x-1 [1/2] x+1;
end do

Ø E[x]=0

Ø What is the behaviour of a probabilistic loop?

Ø What is the expected value of a loop variable, e.g. x?

Ø In both programs above, the expected value of x is the same.

Yet, the programs are not the same!

x:=0;
while … do

x:=2*x-1 [1/2] 2*x+1;
end do

Ø E[x]=0

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 2: Probabilistic Solvable Loops

x:=0;
while … do

x:=x-1 [1/2] x+1;
end do

Ø E[x]=0

Ø What is the behaviour of a probabilistic loop?

Ø What is the expected value of a loop variable, e.g. x?

Ø In both programs above, the expected value of x is the same.
Yet, the programs are not the same!

x:=0;
while … do

x:=2*x-1 [1/2] 2*x+1;
end do

Ø E[x]=0

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 2: Probabilistic Solvable Loops

Ø What is the behaviour of a probabilistic loop?

Ø What is the expected value of a loop variable, e.g. x?

Ø In both programs above, the expected value of x is the same.
Yet, the programs are not the same!

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 2: Probabilistic Solvable Loops

x:=0;
while … do

x:=x-1 [1/2] x+1;
end do

Ø E[x]=0

Ø What is the behaviour of a probabilistic loop?

Ø Can we characterize/recover the value distribution of loop variables?

x:=0;
while … do

x:=2*x-1 [1/2] 2*x+1;
end do

Ø E[x]=0

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 2: Probabilistic Solvable Loops

x:=0;
while … do

x:=x-1 [1/2] x+1;
end do

Ø E[x]=0

Ø What is the behaviour of a probabilistic loop?

Ø Can we characterize/recover the value distribution of loop variables?

Reason about higher-order statistical moments of variables!

x:=0;
while … do

x:=2*x-1 [1/2] 2*x+1;
end do

Ø E[x]=0

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 2: Probabilistic Solvable Loops

x:=0;
while … do

x:=x-1 [1/2] x+1;
end do

Ø E[x(n)]=0, Var[x(n)]= #!

$

Ø What is the behaviour of a probabilistic loop?

Ø Can we characterize/recover the value distribution of loop variables?

Reason about higher-order statistical moments of variables!

x:=0;
while … do

x:=2*x-1 [1/2] 2*x+1;
end do

Ø E[x]=0, Var[x(n)]= 𝑛

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 2: Probabilistic Solvable Loops

x:=0;
while … do

x:=x-1 [1/2] x+1;
end do

Ø E[x(n)]=0, Var[x(n)]= #!

$

x:=0;
while … do

x:=2*x-1 [1/2] 2*x+1;
end do

Ø E[x]=0, Var[x(n)]= 𝑛

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 2: Probabilistic Solvable Loops

x:=0;
while … do

x:=x-1 [1/2] x+1;
end do

Ø E[x(n)]=0, Var[x(n)]= #!

$

x:=0;
while … do

x:=2*x-1 [1/2] 2*x+1;
end do

Ø E[x]=0, Var[x(n)]= 𝑛

joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 2: Probabilistic Solvable Loops
joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)2

real x := rand (-9, 7), y := rand (-7, 9);
real s := 0, f := 0;

while (true){
f := 1 [3/4] 0;
x := x + f * gauss(1,16/3);
y := y + f * rand(-6,10);
s := s + x * y;

}

D

real x := -1, y := 1;
real s := 0, f := 0, d;
while (true){

f := 1 [3/4] 0;
x := x + f * rand(1-d, 1+d);
y := y + f * rand(2-2d,2+2d);
s := x + y;

}

A real x := rand (-9, 7), y := rand (-7, 9);
real s := 0, f := 0;

while (true){
f := 1 [3/4] 0;
x := x + f * rand(-3,5);
y := y + f * rand(-6,10);
s := x + y;

}

B

real x := -1, y := 1;
real s := 0, f := 0, d;
while (true){

f := 1 [3/4] 0;
x := x + f * rand(1-d, 1+d);
y := y + f * rand(2-2d,2+2d);
s := s + x * y;

}

C

Var $% = '()*+
,- %. + 0(,*0,()*)1

2+) %, +
0(,*.,()3+

1) %4 + 0(,*,,()34
', %) +

0-(,*4),()3+
2,,- %

5 $% = 4
0%

4 + 40%
) − % 5 $% = 4

0%
4 + 40%

) − %

5 $% = +
,%

Var $% =)-() +)1
2' %

5 $% = +
,%

Var $% = 4,1
2' % + 2)04

Var $% =)2
0 %

. + 4,2+
2+) %

, +)+-4
1) %4 +

)1,+
', %)+ .242

)00 %

Fig. 1. Examples of four Prob-solvable loops. f := 1[3/4]0 is a statement that assigns to f the
value 1 with probability 3

4 and the value 0 with probability 1� 3
4 = 1

4 . The function rand(a, b)
samples a random number from a uniform distribution with support in the real interval [a, b] and
the function gauss(µ,�2) samples a random number from a normal distribution with mean µ
and variance �2. For each loop, we provide the moment-based invariants for the first (E[]) and
second moments (V ar[]) of s computed using our approach, where n denotes the loop counter.

One of the main challenges in analysing PPs and computing their higher-order mo-
ments comes with the presence of loops and the burden of computing so-called quanti-

tative invariants [19]. Quantitative invariants are properties that are true before and after
each loop iteration. Weakest pre-expectations [19, 27] can be used to compute quanti-
tative invariants. This approach, supported for example in PRINSYS [13], consists in
annotating a loop with a template invariant and then solve constraints over the unknown
coefficients of the template. Other methods [2, 24] use martingales that are expressions
over program variables whose expectations remain invariant. The aforementioned ap-
proaches are however not fully automatic since they require user guidance for providing
templates and hints. In addition, they are limited to invariants over only expected val-
ues: with the exception of [24], they do not compute higher-order moments describing
the distribution generated by the PP (see Section 6 for more details).

In this paper we introduce a fully automated approach to compute invariant prop-
erties over higher-order moments of so-called Prob-solvable loops, to stand for prob-

abilistic P-solvable loops. Prob-solvable loops are PPs that extend the imperative P-
solvable loops described in [23] with probabilistic assignments over random variables
and parametrised distributions. As such, variable updates are expressed by random poly-
nomial, and not only affine, updates (see Section 3). Each program in Fig. 1 is Prob-
solvable; moreover, Fig. 1(C)-(D) involve nonlinear updates over s.

Our work uses statistical properties to eliminate probabilistic choices and turn ran-
dom updates into recurrence relations over higher-order moments of program variables.

Ø Parametrized distributions

Ø Random polynomial assignments → C-finite recurrences over moments

Ø Finite-valued multi-path conditions

→ Higher-order moments of loop variables are computable.

f, x, y, s = 0, -1, 1, 0
while (true):
 f = 1 [3/4] 0
 x = x + f*rand(1-d, 1+d)
 y = y + f*rand(2-2d, 2+2d)
 s = x + y

Goal: Higher-order Moments,
e.g. s^2

f, x, y, s = 0, -1, 1, 0
while (true):
 f = 1 [3/4] 0
 x = x + f*rand(1-d, 1+d)
 y = y + f*rand(2-2d, 2+2d)
 s = x + y

Probabilistic updates: 
 
 xi = aixi + Pi(x1, …, xi−1) [pi] bixi + Qi(x1, …, xi−1)

• Expected values of monomials  
- sufficient to understand E-variables

•
E[X], E[X2], E[XY], …

• Expected values of monomials  
- sufficient to understand E-variables

•
E[X], E[X2], E[XY], …

f, x, y, s = 0, -1, 1, 0
while (true):
 f = 1 [3/4] 0
 x = x + f*rand(1-d, 1+d)
 y = y + f*rand(2-2d, 2+2d)
 s = x + y

Probabilistic updates: 
 
 xi = aixi + Pi(x1, …, xi−1) [pi] bixi + Qi(x1, …, xi−1)

Stochastic recurrences over E-variables:

• Expected values of monomials  
- sufficient to understand E-variables

•
• Computing with E-variables 

 

•

E[c] = c
E[X + cY] = E[X] + cE[Y]
E[X ⋅ Y] ≠ E[X] ⋅ E[Y] unless X, Y are independent

f, x, y, s = 0, -1, 1, 0
while (true):
 f = 1 [3/4] 0
 x = x + f*rand(1-d, 1+d)
 y = y + f*rand(2-2d, 2+2d)
 s = x + y

Stochastic recurrences over E-variables:

E[X], E[X2], E[XY], …

• Expected values of monomials  
- necessary to understand E-variables

•

E[c] = c
E[X + cY] = E[X] + cE[Y]
E[X ⋅ Y] ≠ E[X] ⋅ E[Y] unless X, Y are independent

f, x, y, s = 0, -1, 1, 0
while (true):
 f = 1 [3/4] 0
 x = x + f*rand(1-d, 1+d)
 y = y + f*rand(2-2d, 2+2d)
 s = x + y

Stochastic recurrences over E-variables:

E[X], E[X2], E[XY], …

• Computing with E-variables 
 

•

Expected values of monomials cannot be simplified

• x(n+1) = 2*x(n)

• x(n+1) = x(n) + unif(0,1)

• x(n+1) = 2*x(n)

• x(n+1) = x(n) + unif(0,1)

• x(n+1) = 2*x(n)

• x(n+1) = x(n) + unif(0,1)

—use moments: treat each moment as a separate E-variable

• E[x(n+1)] = E[x(n)] + 1/2 
E[x2(n+1)] = E[x2(n)] + … 
E[x3(n+1)] = … 
…

• x(n+1) = 2*x(n)

• x(n+1) = x(n) + unif(0,1)

—use moments: treat each moment as a separate E-variable

• E[x(n+1)] = E[x(n)] + 1/2 
E[x2(n+1)] = E[x2(n)] + … 
E[x3(n+1)] = … 
…

—solve stochastic recurrences: closed forms over E-variables

f, x, y, s = 0, -1, 1, 0
while (true):
 f = 1 [3/4] 0
 x = x + f*rand(1-d, 1+d)
 y = y + f*rand(2-2d, 2+2d)
 s = x + y

goal: {s^2}

1. Set S := goal

2. While S is not empty:

3. Pick an E-variable from S

4. Get recurrence over E-variables

5. Add new E-variables to S

6. Solve the system of recurrences

7. Compute moment-based invariants

f, x, y, s = 0, -1, 1, 0
while (true):
 f = 1 [3/4] 0
 x = x + f*rand(1-d, 1+d)
 y = y + f*rand(2-2d, 2+2d)
 s = x + y

goal: {s^2}

{s2}

f, x, y, s = 0, -1, 1, 0
while (true):
 f = 1 [3/4] 0
 x = x + f*rand(1-d, 1+d)
 y = y + f*rand(2-2d, 2+2d)
 s = x + y

goal: {s^2}

1. Set S := goal

2. While S is not empty:

3. Pick an E-variable from S

4. Get recurrence over E-variables

5. Add new E-variables to S

6. Solve the system of recurrences

7. Compute moment-based invariants

{s2} s2

f, x, y, s = 0, -1, 1, 0
while (true):
 f = 1 [3/4] 0
 x = x + f*rand(1-d, 1+d)
 y = y + f*rand(2-2d, 2+2d)
 s = x + y

goal: {s^2}

1. Set S := goal

2. While S is not empty:

3. Pick an E-variable from S

4. Get recurrence over E-variables

5. Add new E-variables to S

6. Solve the system of recurrences

7. Compute moment-based invariants

{s2} s2 E[s2(n + 1)] = E[(x(n + 1) + y(n + 1))2]

f, x, y, s = 0, -1, 1, 0
while (true):
 f = 1 [3/4] 0
 x = x + f*rand(1-d, 1+d)
 y = y + f*rand(2-2d, 2+2d)
 s = x + y

goal: {s^2}

1. Set S := goal

2. While S is not empty:

3. Pick an E-variable from S

4. Get recurrence over E-variables

5. Add new E-variables to S

6. Solve the system of recurrences

7. Compute moment-based invariants

{s2} s2 E[s2(n + 1)] = E[(x(n + 1) + y(n + 1))2]
E[s2(n + 1)] = E[x2(n + 1)] + 2E[xy(n + 1)] + E[y2(n + 1)]

f, x, y, s = 0, -1, 1, 0
while (true):
 f = 1 [3/4] 0
 x = x + f*rand(1-d, 1+d)
 y = y + f*rand(2-2d, 2+2d)
 s = x + y

goal: {s^2}

1. Set S := goal

2. While S is not empty:

3. Pick an E-variable from S

4. Get recurrence over E-variables

5. Add new E-variables to S

6. Solve the system of recurrences

7. Compute moment-based invariants

f, x, y, s = 0, -1, 1, 0
while (true):
 f = 1 [3/4] 0
 x = x + f*rand(1-d, 1+d)
 y = y + f*rand(2-2d, 2+2d)
 s = x + y

goal: {s^2}

{s2} s2 E[s2(n + 1)] = E[(x(n + 1) + y(n + 1))2]

S = {x2, xy, y2}

E[s2(n + 1)] = E[x2(n + 1)] + 2E[xy(n + 1)] + E[y2(n + 1)]

1. Set S := goal

2. While S is not empty:

3. Pick an E-variable from S

4. Get recurrence over E-variables

5. Add new E-variables to S

6. Solve the system of recurrences

7. Compute moment-based invariants

f, x, y, s = 0, -1, 1, 0
while (true):
 f = 1 [3/4] 0
 x = x + f*rand(1-d, 1+d)
 y = y + f*rand(2-2d, 2+2d)
 s = x + y

goal: {s^2}

x2

1. Set S := goal

2. While S is not empty:

3. Pick an E-variable from S

4. Get recurrence over E-variables

5. Add new E-variables to S

6. Solve the system of recurrences

7. Compute moment-based invariants

E[x2(n + 1)] = E[(x(n) + f(n + 1) ⋅ rand(1 − d,1 + d))2]

f, x, y, s = 0, -1, 1, 0
while (true):
 f = 1 [3/4] 0
 x = x + f*rand(1-d, 1+d)
 y = y + f*rand(2-2d, 2+2d)
 s = x + y

goal: {s^2}

x2

1. Set S := goal

2. While S is not empty:

3. Pick an E-variable from S

4. Get recurrence over E-variables

5. Add new E-variables to S

6. Solve the system of recurrences

7. Compute moment-based invariants

f, x, y, s = 0, -1, 1, 0
while (true):
 f = 1 [3/4] 0
 x = x + f*rand(1-d, 1+d)
 y = y + f*rand(2-2d, 2+2d)
 s = x + y

goal: {s^2}

E[x2(n + 1)] = E[(x(n) + f(n + 1) ⋅ rand(1 − d,1 + d))2]x2

E[x2(n + 1)] = E[x2(n)] + 2E[x(n)]E[f(n + 1)]] + E[(f(n + 1))2](1 + d2

3)

1. Set S := goal

2. While S is not empty:

3. Pick an E-variable from S

4. Get recurrence over E-variables

5. Add new E-variables to S

6. Solve the system of recurrences

7. Compute moment-based invariants

S = {xy, y2, x, f, f2}

f, x, y, s = 0, -1, 1, 0
while (true):
 f = 1 [3/4] 0
 x = x + f*rand(1-d, 1+d)
 y = y + f*rand(2-2d, 2+2d)
 s = x + y

goal: {s^2}

E[x2(n + 1)] = E[(x(n) + f(n + 1) ⋅ rand(1 − d,1 + d))2]x2

E[x2(n + 1)] = E[x2(n)] + 2E[x(n)]E[f(n + 1)]] + E[(f(n + 1))2](1 + d2

3)

1. Set S := goal

2. While S is not empty:

3. Pick an E-variable from S

4. Get recurrence over E-variables

5. Add new E-variables to S

6. Solve the system of recurrences

7. Compute moment-based invariants

S = {xy, y2, x, f, f2}

f, x, y, s = 0, -1, 1, 0
while (true):
 f = 1 [3/4] 0
 x = x + f*rand(1-d, 1+d)
 y = y + f*rand(2-2d, 2+2d)
 s = x + y

goal: {s^2}

E[x2(n + 1)] = E[(x(n) + f(n + 1) ⋅ rand(1 − d,1 + d))2]x2

E[x2(n + 1)] = E[x2(n)] + 2E[x(n)]E[f(n + 1)]] + E[(f(n + 1))2](1 + d2

3)

…and so on …

1. Set S := goal

2. While S is not empty:

3. Pick an E-variable from S

4. Get recurrence over E-variables

5. Add new E-variables to S

6. Solve the system of recurrences

7. Compute moment-based invariants

E[f(n + 1)] =
3
4

E[s(n + 1)] = E[x(n + 1)] + E[y(n + 1)]

E[s(n + 1)2] = E[x(n + 1)2] + 2 ⋅ E[(xy)(n + 1)] + E[y(n + 1)2]

. . .

E[x(n + 1)] = E[x(n)] +
3
4

E[f(n + 1)]

E[y(n + 1)] = E[y(n)] +
3
2

E[f(n + 1)]

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 2: Probabilistic Solvable Loops

Ø Level 1 + Random polynomial assignments + finite-valued conditions

Ø C-finite recurrences of E-variables

Ø Tests are finite-valued

Ø Automation via symbolic summation and moment-based computation
Ø POLAR tool https://github.com/probing-lab/polar

Ø Further applications: probabilistic termination, sensitivity, probabilistic inferences

joint work w A. Humenberger, M. Jaroschek, A. Varonka (ISSAC17,VMCAI18,RAMICS18)

Chalmers

Level 1:
Polynomial
Solvable Loops

Level 2:
Probabilistic
Solvable Loops

Level 3:
Unsolvable Loops

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Invariant generation

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 3: Unsolvable Loops

a:=-2; b:=3; y:=0;
while … do

a:=2*a+b2;
b:=2*b-b2;
y≔!

"
∗y+1

end do

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 3: Unsolvable Loops

a:=-2; b:=3; y:=0;
while … do

a:=2*a+b2;
b:=2*b-b2;
y≔!

"
∗y+1

end do

Ø Polynomial updates → non-C-finite recurrences Level 1 and Level 2 ⨂

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 3: Unsolvable Loops

a:=-2; b:=3; y:=0;
while … do

a:=2*a+b2;
b:=2*b-b2;
y≔!

"
∗y+1

end do

Ø Polynomial updates → non-C-finite recurrences Level 1 and Level 2 ⨂

Ø Yet, x(n)=a(n)+b(n) satisfy a C-finite recurrence: a(n+1)+b(n+1)=2*(a(n)+b(n))

n≥0, a=2n, b=2-n

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 3: Unsolvable Loops

a:=-2; b:=3; y:=0;
while … do

a:=2*a+b2;
b:=2*b-b2;
y≔!

"
∗y+1

end do

Ø Polynomial updates → non-C-finite recurrences Level 1 and Level 2 ⨂

Ø Yet, x(n)=a(n)+b(n) satisfy a C-finite recurrence: a(n+1)+b(n+1)=2*(a(n)+b(n))

Ø Unsolvable loop over a, b, y → Solvable loop over x, y Level 1 ✓

n≥0, a=2n, b=2-n

x:=1; y:=0;
while … do

x:=2*x;
y≔!

"
∗y+1

end do

→ Level 1: Solvable Loops

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 3: Unsolvable Loops

a:=-2; b:=3; y:=0;
while … do

a:=2*a+b2;
b:=2*b-b2;
y≔!

"
∗y+1

end do

Ø Polynomial updates → non-C-finite recurrences Level 1 and Level 2 ⨂

Ø Yet, x(n)=a(n)+b(n) satisfy a C-finite recurrence: a(n+1)+b(n+1)=2*(a(n)+b(n))

Ø Unsolvable loop over a, b, y → Solvable loop over x, y Level 1 ✓

Invariant: (a+b)*y-2*(a+b)+2=0 ← x*y-2*x+2=0

n≥0, a=2n, b=2-n

x:=1; y:=0;
while … do

x:=2*x;
y≔!

"
∗y+1

end do

→ Level 1: Solvable Loops

Chalmers

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 3: Unsolvable Loops → Level 1 or Level 2: Solvable Loops

joint work w D. Amrollahi, E. Bartocci, G. Kenison, M. Stankovic, M. Moosbrugger (SAS22)

Ø Level 1 or Level 2 + non-C-finite recurrences

Ø Compute polynomial relations P over variables with non C-finite recurrences

Ø If P is C-finite expression, use P to solve unsolvable loops

Ø Automation via variable dependency analysis and polynomial constraint solving
Ø POLAR tool https://github.com/probing-lab/polar

Chalmers

Level 1:
Polynomial
Solvable Loops

Level 2:
Probabilistic
Solvable Loops

Level 3:
Unsolvable Loops

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Invariant generation

Chalmers

Level 1:
Polynomial
Solvable Loops

Level 2:
Probabilistic
Solvable Loops

Level 3:
Unsolvable Loops

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Invariant generation
Re
cu
rre
nc
es

Mo
me
nts

Po
lyn
om
ial
s

Chalmers

Level 1:
Polynomial
Solvable Loops

Level 2:
Probabilistic
Solvable Loops

Level 3:
Unsolvable Loops

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Invariant generation
Re
cu
rre
nc
es

Mo
me
nts

Po
lyn
om
ial
s

Un
de
cid
ab
ilit
y

Chalmers

Level 1:
Polynomial
Solvable Loops

Level 2:
Probabilistic
Solvable Loops

Level 3:
Unsolvable Loops

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Invariant generation
Re
cu
rre
nc
es

Mo
me
nts

Po
lyn
om
ial
s

Un
de
cid
ab
ilit
y

Prob-so
lva

ble

loops

Affin
e loops

P-solvable loops

Arb
itr

ary
 polyn

omial

loops
Arb

itr
ary

 quad
rat

ic

loops

Chalmers

Level 1:
Polynomial
Solvable Loops

Level 2:
Probabilistic
Solvable Loops

Level 3:
Unsolvable Loops

Symbolic Computation in Automated Program Reasoning
Laura Kovács

Invariant generation
Re
cu
rre
nc
es

Mo
me
nts

Po
lyn
om
ial
s

Un
de
cid
ab
ilit
y

Prob-so
lva

ble

loops Arb
itr

ary
 polyn

omial

loops
Arb

itr
ary

 quad
rat

ic

loops

Affin
e loops

P-solvable loops

