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a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); b=b+1;

else C[c]=A[a]; c=c+1;

a=a+1; 

end do
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while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); b=b+1;

else C[c]=A[a]; c=c+1;

a=a+1; 

end do

Program property:

("p)(0≤p<b Þ
($q)(0≤q<a Ù B[p]=A[q]+h(p) Ù A[q]>0)
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a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); b=b+1;

else C[c]=A[a]; c=c+1;

a=a+1; 

end do

cnt=0, fib1=1, fib2=0;

while (cnt<n) do

t=fib1; fib1=fib1+fib2; fib2=t; cnt++;

end do
h
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a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); b=b+1;

else C[c]=A[a]; c=c+1;

a=a+1; 

end do

cnt=0, fib1=1, fib2=0;

while (cnt<n) do

t=fib1; fib1=fib1+fib2; fib2=t; cnt++;

end do
h

Program property:

fib14+ fib24 + 2*fib1*fib23 – 2 fib13*fib2 -
fib12*fib22 -1 = 0
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while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); b=b+1;
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a=a+1; 

end do

cnt=0, fib1=1, fib2=0;

while (cnt<n) do

t=fib1; fib1=fib1+fib2; fib2=t; cnt++;

end do
h

fib14+ fib24 + 2*fib1*fib23 – 2 fib13*fib2 -
fib12*fib22 -1 = 0
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Level 1: Polynomial Solvable Loops

x:=1; y:=0; 
while … do x:=2*x;  y≔!

"
∗y+1  end do

1. Express state from (n+1)th iteration in terms of the 
nth iteration → algebraic recurrences of loop variables

n≥0,  a=2n,   b=2-n

!
𝑥 𝑛 + 1 = 2 ∗ 𝑥 𝑛

𝑦 𝑛 + 1 =
1
2
∗ 𝑦 𝑛 + 1
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x:=1; y:=0; 
while … do x:=2*x;  y≔!

"
∗y+1  end do

1. Express state from (n+1)th iteration in terms of the 
nth iteration → algebraic recurrences of loop variables

2. Solve recurrences → closed forms of loop variables

!
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while … do x:=2*x;  y≔!

"
∗y+1  end do

1. Express state from (n+1)th iteration in terms of the 
nth iteration → algebraic recurrences of loop variables

2. Solve recurrences → closed forms of loop variables

3. Derive algebraic dependencies among exponentials in n

n≥0,   a=2n,   b=2-n

!
𝑥 𝑛 + 1 = 2 ∗ 𝑥 𝑛
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while … do x:=2*x;  y≔!
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∗y+1  end do

1. Express state from (n+1)th iteration in terms of the 
nth iteration → algebraic recurrences of loop variables

2. Solve recurrences → closed forms of loop variables

3. Derive algebraic dependencies among exponentials in n

→ Finite basis of polynomial invariant ideal

n≥0,   a=2n,   b=2-n
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4. Eliminate expressions in n ← Gröbner basis computation 𝑥 ∗ 𝑦 − 2 ∗ 𝑥 + 2 = 0
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Level 1: Polynomial Solvable Loops

Ø Loops with polynomial assignments and nested conditionals

Ø Structural constraints on assignments with polynomial rhs 
← C-finite recurrences of loop variables

Ø Tests are ignored → non-deterministic programs

Ø Automation via symbolic summation and Gröbner basis computation
Ø ALIGATOR tool https://ahumenberger.github.io/aligator/

Ø Further applications: loop termination, synthesis, deductive verification

joint work w A. Humenberger, M. Jaroschek, A. Varonka (ISSAC17,VMCAI18,RAMICS23)
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x:=x-1 [1/2] x+1;
end do

Ø What is the behaviour of a probabilistic loop?

Ø What is the expected value of a loop varaiaable, e.g. x?

Ø In both programs above, the expected value of x is the same.

Yet, the programs are not the same!
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Ø What is the expected value of a loop variable, e.g. x?

Ø In both programs above, the expected value of x is the same.
Yet, the programs are not the same!
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Ø Can we characterize/recover the value distribution of loop variables?
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end do

Ø E[x]=0
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Level 2: Probabilistic Solvable Loops

x:=0; 
while … do

x:=x-1 [1/2] x+1;
end do

Ø E[x]=0

Ø What is the behaviour of a probabilistic loop?

Ø Can we characterize/recover the value distribution of loop variables?

Reason about higher-order statistical moments of variables!

x:=0; 
while … do

x:=2*x-1 [1/2] 2*x+1;
end do

Ø E[x]=0
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Ø What is the behaviour of a probabilistic loop?

Ø Can we characterize/recover the value distribution of loop variables?

Reason about higher-order statistical moments of variables!
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while … do

x:=2*x-1 [1/2] 2*x+1;
end do

Ø E[x]=0, Var[x(n)]= 𝑛
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joint work w E. Bartocci, M. Stankovic, M. Moosbrugger (ATVA19, TACAS20, OOPSLA22)2

real x := rand (-9, 7), y := rand (-7, 9); 
real s := 0, f := 0; 

while (true){
f     := 1 [3/4] 0;
x     := x + f * gauss(1,16/3);
y     := y + f * rand(-6,10);
s     := s + x * y;

}

D

real x := -1, y :=  1;
real s := 0, f := 0, d; 
while (true){

f      := 1 [3/4] 0;
x     := x + f * rand(1-d,  1+d);
y     := y + f * rand(2-2d,2+2d);
s     := x + y;

} 

A real x := rand (-9, 7), y := rand (-7, 9); 
real s := 0, f := 0; 

while (true){
f     := 1 [3/4] 0;
x     := x + f * rand(-3,5);
y     := y + f * rand(-6,10);
s     := x + y;

}

B

real x := -1, y :=  1;
real s := 0, f := 0, d; 
while (true){

f      := 1 [3/4] 0;
x     := x + f * rand(1-d,  1+d);
y     := y + f * rand(2-2d,2+2d);
s     := s + x * y;

} 

C

Var $% = '()*+
,- %. + 0(,*0,()*)1

2+) %, +
0(,*.,()3+

1) %4 + 0(,*,,()34
', %) +

0-(,*4),()3+
2,,- %

5 $% = 4
0%

4 + 40%
) − % 5 $% = 4

0%
4 + 40%

) − %

5 $% = +
,%

Var $% = )-() + )1
2' %

5 $% = +
,%

Var $% = 4,1
2' % + 2)04

Var $% = )2
0 %

. + 4,2+
2+) %

, + )+-4
1) %4 +

)1,+
', %)+ .242

)00 %

Fig. 1. Examples of four Prob-solvable loops. f := 1[3/4]0 is a statement that assigns to f the
value 1 with probability 3

4 and the value 0 with probability 1� 3
4 = 1

4 . The function rand(a, b)
samples a random number from a uniform distribution with support in the real interval [a, b] and
the function gauss(µ,�2) samples a random number from a normal distribution with mean µ
and variance �2. For each loop, we provide the moment-based invariants for the first (E[]) and
second moments (V ar[]) of s computed using our approach, where n denotes the loop counter.

One of the main challenges in analysing PPs and computing their higher-order mo-
ments comes with the presence of loops and the burden of computing so-called quanti-

tative invariants [19]. Quantitative invariants are properties that are true before and after
each loop iteration. Weakest pre-expectations [19, 27] can be used to compute quanti-
tative invariants. This approach, supported for example in PRINSYS [13], consists in
annotating a loop with a template invariant and then solve constraints over the unknown
coefficients of the template. Other methods [2, 24] use martingales that are expressions
over program variables whose expectations remain invariant. The aforementioned ap-
proaches are however not fully automatic since they require user guidance for providing
templates and hints. In addition, they are limited to invariants over only expected val-
ues: with the exception of [24], they do not compute higher-order moments describing
the distribution generated by the PP (see Section 6 for more details).

In this paper we introduce a fully automated approach to compute invariant prop-
erties over higher-order moments of so-called Prob-solvable loops, to stand for prob-

abilistic P-solvable loops. Prob-solvable loops are PPs that extend the imperative P-
solvable loops described in [23] with probabilistic assignments over random variables
and parametrised distributions. As such, variable updates are expressed by random poly-
nomial, and not only affine, updates (see Section 3). Each program in Fig. 1 is Prob-
solvable; moreover, Fig. 1(C)-(D) involve nonlinear updates over s.

Our work uses statistical properties to eliminate probabilistic choices and turn ran-
dom updates into recurrence relations over higher-order moments of program variables.

Ø Parametrized distributions

Ø Random polynomial assignments → C-finite recurrences over moments

Ø Finite-valued multi-path conditions

→   Higher-order moments of loop variables are computable.



f, x, y, s = 0, -1, 1, 0 
while (true): 
  f = 1 [3/4] 0 
  x = x + f*rand(1-d, 1+d) 
  y = y + f*rand(2-2d, 2+2d) 
  s = x + y

Goal: Higher-order Moments,  
e.g. s^2 



f, x, y, s = 0, -1, 1, 0 
while (true): 
  f = 1 [3/4] 0 
  x = x + f*rand(1-d, 1+d) 
  y = y + f*rand(2-2d, 2+2d) 
  s = x + y

Probabilistic updates: 
 
 xi = aixi + Pi(x1, …, xi−1) [pi] bixi + Qi(x1, …, xi−1)

• Expected values of monomials  
- sufficient to understand E-variables


•
E[X], E[X2], E[XY ], …
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• Expected values of monomials  
- sufficient to understand E-variables


•
• Computing with E-variables 

 

•

E[c] = c
E[X + cY ] = E[X] + cE[Y ]
E[X ⋅ Y ] ≠ E[X] ⋅ E[Y ] unless X, Y are independent
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• Expected values of monomials  
- necessary to understand E-variables


•

E[c] = c
E[X + cY ] = E[X] + cE[Y ]
E[X ⋅ Y ] ≠ E[X] ⋅ E[Y ] unless X, Y are independent

f, x, y, s = 0, -1, 1, 0 
while (true): 
  f = 1 [3/4] 0 
  x = x + f*rand(1-d, 1+d) 
  y = y + f*rand(2-2d, 2+2d) 
  s = x + y

Stochastic recurrences over E-variables:

E[X], E[X2], E[XY ], …

• Computing with E-variables 
 

•

Expected values of monomials cannot be simplified
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• x(n+1) = 2*x(n)


• x(n+1) = x(n) + unif(0,1)

—use moments: treat each moment as a separate E-variable

• E[x(n+1)] = E[x(n)] + 1/2 
E[x2(n+1)] = E[x2(n)] + … 
E[x3(n+1)] = … 
…



• x(n+1) = 2*x(n)


• x(n+1) = x(n) + unif(0,1)

—use moments: treat each moment as a separate E-variable

• E[x(n+1)] = E[x(n)] + 1/2 
E[x2(n+1)] = E[x2(n)] + … 
E[x3(n+1)] = … 
…

—solve stochastic recurrences: closed forms over E-variables



f, x, y, s = 0, -1, 1, 0 
while (true): 
  f = 1 [3/4] 0 
  x = x + f*rand(1-d, 1+d) 
  y = y + f*rand(2-2d, 2+2d) 
  s = x + y 

goal: {s^2}



1. Set S := goal

2. While S is not empty:

3.     Pick an E-variable from S

4.     Get recurrence over E-variables

5.     Add new E-variables to S

6. Solve the system of recurrences
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S = {xy, y2, x, f, f2}

f, x, y, s = 0, -1, 1, 0 
while (true): 
  f = 1 [3/4] 0 
  x = x + f*rand(1-d, 1+d) 
  y = y + f*rand(2-2d, 2+2d) 
  s = x + y 

goal: {s^2}

E[x2(n + 1)] = E[(x(n) + f(n + 1) ⋅ rand(1 − d,1 + d))2]x2

E[x2(n + 1)] = E[x2(n)] + 2E[x(n)]E[ f(n + 1)]] + E[( f(n + 1))2](1 + d2

3 )

…and so on …
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6. Solve the system of recurrences
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E[ f(n + 1)] =
3
4

E[s(n + 1)] = E[x(n + 1)] + E[y(n + 1)]

E[s(n + 1)2] = E[x(n + 1)2] + 2 ⋅ E[(xy)(n + 1)] + E[y(n + 1)2]

. . .

E[x(n + 1)] = E[x(n)] +
3
4

E[ f(n + 1)]

E[y(n + 1)] = E[y(n)] +
3
2

E[ f(n + 1)]
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Symbolic Computation in Automated Program Reasoning
Laura Kovács

Level 2: Probabilistic Solvable Loops

Ø Level 1 + Random polynomial assignments + finite-valued conditions

Ø C-finite recurrences of E-variables

Ø Tests are finite-valued

Ø Automation via symbolic summation and moment-based computation
Ø POLAR tool https://github.com/probing-lab/polar

Ø Further applications: probabilistic termination, sensitivity, probabilistic inferences

joint work w A. Humenberger, M. Jaroschek, A. Varonka (ISSAC17,VMCAI18,RAMICS18)
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Level 3: Unsolvable Loops

a:=-2; b:=3; y:=0; 
while … do

a:=2*a+b2;
b:=2*b-b2;
y≔!

"
∗y+1 

end do

Ø Polynomial updates → non-C-finite recurrences Level 1 and Level 2 ⨂

Ø Yet, x(n)=a(n)+b(n) satisfy a C-finite recurrence: a(n+1)+b(n+1)=2*(a(n)+b(n))

Ø Unsolvable loop over a, b, y       → Solvable loop over x, y Level 1 ✓

Invariant: (a+b)*y-2*(a+b)+2=0   ←    x*y-2*x+2=0

n≥0,  a=2n,   b=2-n

x:=1; y:=0; 
while … do

x:=2*x;
y≔!

"
∗y+1 

end do

→ Level 1: Solvable Loops
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Laura Kovács

Level 3: Unsolvable Loops → Level 1 or Level 2: Solvable Loops

joint work w  D. Amrollahi, E. Bartocci, G. Kenison, M. Stankovic, M. Moosbrugger (SAS22)

Ø Level 1 or Level 2 + non-C-finite recurrences

Ø Compute polynomial relations P over variables with non C-finite recurrences  

Ø If P is  C-finite expression, use P to solve unsolvable loops

Ø Automation via variable dependency analysis and polynomial constraint solving 
Ø POLAR tool https://github.com/probing-lab/polar
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