
Optimization Modulo Theory: A Tutorial Using Z3 and
Practical Case Studies

Mădălina Eraşcu

West University of Timişoara, Romania

madalina.erascu@e-uvt.ro

September 16th, 2024

This work was supported by a grant of the Romanian National Authority for Scientific
Research and Innovation, CNCS/CCCDI-UEFISCDI, project number
PN-III-P1-1.1-TE-2021-0676.

Outline

Motivation

Part 1: Optimization Modulo Theory - background and examples

Part 2: Optimization Modulo Theory - Case Study
Problem Specification
Problem Formalization

Model-driven approach: Formulation of the Satisfiability/Optimization Modulo Theory
Problem
Data-driven approach: Graph Neural Network Formulation

Solution
Dataset generation
Training a GNN model for edge classification
Integrated GNN and Exact Techniques: Experimental Results

Future Work

Acknowledgements

▶ Material resources: Erika Abraham (RWTH Aachen),
https://microsoft.github.io/z3guide/, https://github.com/Z3Prover/z3.

▶ Parts of this work is joint with: Flavia Micota, Daniela Zaharie, Eduard
Laitin.

▶ Parts of this work was inspired by or polished after teaching satisfiability
checking topics to Master students or supervising Bachelor/Master theses.

Z3 solver online to be used during the tutorial

Acknowledgements

▶ Material resources: Erika Abraham (RWTH Aachen),
https://microsoft.github.io/z3guide/, https://github.com/Z3Prover/z3.

▶ Parts of this work is joint with: Flavia Micota, Daniela Zaharie, Eduard
Laitin.

▶ Parts of this work was inspired by or polished after teaching satisfiability
checking topics to Master students or supervising Bachelor/Master theses.

Acknowledgements

▶ Material resources: Erika Abraham (RWTH Aachen),
https://microsoft.github.io/z3guide/, https://github.com/Z3Prover/z3.

▶ Parts of this work is joint with: Flavia Micota, Daniela Zaharie, Eduard
Laitin.

▶ Parts of this work was inspired by or polished after teaching satisfiability
checking topics to Master students or supervising Bachelor/Master theses.

Acknowledgements

▶ Material resources: Erika Abraham (RWTH Aachen),
https://microsoft.github.io/z3guide/, https://github.com/Z3Prover/z3.

▶ Parts of this work is joint with: Flavia Micota, Daniela Zaharie, Eduard
Laitin.

▶ Parts of this work was inspired by or polished after teaching satisfiability
checking topics to Master students or supervising Bachelor/Master theses.

Files used in this presentation

Contents

Motivation

Part 1: Optimization Modulo Theory - background and examples

Part 2: Optimization Modulo Theory - Case Study
Problem Specification
Problem Formalization

Model-driven approach: Formulation of the Satisfiability/Optimization Modulo Theory
Problem
Data-driven approach: Graph Neural Network Formulation

Solution
Dataset generation
Training a GNN model for edge classification
Integrated GNN and Exact Techniques: Experimental Results

Future Work

Motivation

Constrained optimization problems have applications in engineering, economics,
computer science, just to name a few.

General form:

min f1(x), f2(x), ..., fp(x) ∀p ≥ 1
subject to gi (x) = ci ∀i = 1, n

hj(x) ≥ dj ∀j = 1,m

Solution approaches:

1. Exact methods

▶ Constrained Programming (CP)
▶ Modelling languages can be used, e.g. MiniZinc [15]
▶ Google OR-Tools [16], Gecode [17], Chuffed [6]

▶ Mathematical Programming (MP)
▶ CPLEX [1]

▶ Satisfiability Modulo Theory (SMT)
▶ Z3 [7], cvc5 [3], Yices2 [8], OpenSMT [5].

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ heuristics and metaheuristics
▶ Advantage: faster
▶ Drawback: provides a (sub)optimal solution

Motivation

Constrained optimization problems have applications in engineering, economics,
computer science, just to name a few.

General form:

min f1(x), f2(x), ..., fp(x) ∀p ≥ 1
subject to gi (x) = ci ∀i = 1, n

hj(x) ≥ dj ∀j = 1,m

Solution approaches:

1. Exact methods

▶ Constrained Programming (CP)
▶ Modelling languages can be used, e.g. MiniZinc [15]
▶ Google OR-Tools [16], Gecode [17], Chuffed [6]

▶ Mathematical Programming (MP)
▶ CPLEX [1]

▶ Satisfiability Modulo Theory (SMT)
▶ Z3 [7], cvc5 [3], Yices2 [8], OpenSMT [5].

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ heuristics and metaheuristics
▶ Advantage: faster
▶ Drawback: provides a (sub)optimal solution

Motivation

Constrained optimization problems have applications in engineering, economics,
computer science, just to name a few.

General form:

min f1(x), f2(x), ..., fp(x) ∀p ≥ 1
subject to gi (x) = ci ∀i = 1, n

hj(x) ≥ dj ∀j = 1,m

Solution approaches:

1. Exact methods
▶ Constrained Programming (CP)

▶ Modelling languages can be used, e.g. MiniZinc [15]
▶ Google OR-Tools [16], Gecode [17], Chuffed [6]

▶ Mathematical Programming (MP)
▶ CPLEX [1]

▶ Satisfiability Modulo Theory (SMT)
▶ Z3 [7], cvc5 [3], Yices2 [8], OpenSMT [5].

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ heuristics and metaheuristics
▶ Advantage: faster
▶ Drawback: provides a (sub)optimal solution

Motivation

Constrained optimization problems have applications in engineering, economics,
computer science, just to name a few.

General form:

min f1(x), f2(x), ..., fp(x) ∀p ≥ 1
subject to gi (x) = ci ∀i = 1, n

hj(x) ≥ dj ∀j = 1,m

Solution approaches:

1. Exact methods
▶ Constrained Programming (CP)

▶ Modelling languages can be used, e.g. MiniZinc [15]
▶ Google OR-Tools [16], Gecode [17], Chuffed [6]

▶ Mathematical Programming (MP)
▶ CPLEX [1]

▶ Satisfiability Modulo Theory (SMT)
▶ Z3 [7], cvc5 [3], Yices2 [8], OpenSMT [5].

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ heuristics and metaheuristics
▶ Advantage: faster
▶ Drawback: provides a (sub)optimal solution

Motivation

Constrained optimization problems have applications in engineering, economics,
computer science, just to name a few.

General form:

min f1(x), f2(x), ..., fp(x) ∀p ≥ 1
subject to gi (x) = ci ∀i = 1, n

hj(x) ≥ dj ∀j = 1,m

Solution approaches:

1. Exact methods
▶ Constrained Programming (CP)

▶ Modelling languages can be used, e.g. MiniZinc [15]
▶ Google OR-Tools [16], Gecode [17], Chuffed [6]

▶ Mathematical Programming (MP)
▶ CPLEX [1]

▶ Satisfiability Modulo Theory (SMT)
▶ Z3 [7], cvc5 [3], Yices2 [8], OpenSMT [5].

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ heuristics and metaheuristics
▶ Advantage: faster
▶ Drawback: provides a (sub)optimal solution

Motivation

Constrained optimization problems have applications in engineering, economics,
computer science, just to name a few.

General form:

min f1(x), f2(x), ..., fp(x) ∀p ≥ 1
subject to gi (x) = ci ∀i = 1, n

hj(x) ≥ dj ∀j = 1,m

Solution approaches:

1. Exact methods
▶ Constrained Programming (CP)

▶ Modelling languages can be used, e.g. MiniZinc [15]
▶ Google OR-Tools [16], Gecode [17], Chuffed [6]

▶ Mathematical Programming (MP)
▶ CPLEX [1]

▶ Satisfiability Modulo Theory (SMT)
▶ Z3 [7], cvc5 [3], Yices2 [8], OpenSMT [5].

▶ Advantage: provides an optimal solution

▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ heuristics and metaheuristics
▶ Advantage: faster
▶ Drawback: provides a (sub)optimal solution

Motivation

Constrained optimization problems have applications in engineering, economics,
computer science, just to name a few.

General form:

min f1(x), f2(x), ..., fp(x) ∀p ≥ 1
subject to gi (x) = ci ∀i = 1, n

hj(x) ≥ dj ∀j = 1,m

Solution approaches:

1. Exact methods
▶ Constrained Programming (CP)

▶ Modelling languages can be used, e.g. MiniZinc [15]
▶ Google OR-Tools [16], Gecode [17], Chuffed [6]

▶ Mathematical Programming (MP)
▶ CPLEX [1]

▶ Satisfiability Modulo Theory (SMT)
▶ Z3 [7], cvc5 [3], Yices2 [8], OpenSMT [5].

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ heuristics and metaheuristics
▶ Advantage: faster
▶ Drawback: provides a (sub)optimal solution

Motivation

Constrained optimization problems have applications in engineering, economics,
computer science, just to name a few.

General form:

min f1(x), f2(x), ..., fp(x) ∀p ≥ 1
subject to gi (x) = ci ∀i = 1, n

hj(x) ≥ dj ∀j = 1,m

Solution approaches:

1. Exact methods
▶ Constrained Programming (CP)

▶ Modelling languages can be used, e.g. MiniZinc [15]
▶ Google OR-Tools [16], Gecode [17], Chuffed [6]

▶ Mathematical Programming (MP)
▶ CPLEX [1]

▶ Satisfiability Modulo Theory (SMT)
▶ Z3 [7], cvc5 [3], Yices2 [8], OpenSMT [5].

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ heuristics and metaheuristics
▶ Advantage: faster
▶ Drawback: provides a (sub)optimal solution

Motivation

Constrained optimization problems have applications in engineering, economics,
computer science, just to name a few.

General form:

min f1(x), f2(x), ..., fp(x) ∀p ≥ 1
subject to gi (x) = ci ∀i = 1, n

hj(x) ≥ dj ∀j = 1,m

Solution approaches:

1. Exact methods
▶ Constrained Programming (CP)

▶ Modelling languages can be used, e.g. MiniZinc [15]
▶ Google OR-Tools [16], Gecode [17], Chuffed [6]

▶ Mathematical Programming (MP)
▶ CPLEX [1]

▶ Satisfiability Modulo Theory (SMT)
▶ Z3 [7], cvc5 [3], Yices2 [8], OpenSMT [5].

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods
▶ heuristics and metaheuristics

▶ Advantage: faster
▶ Drawback: provides a (sub)optimal solution

Motivation

Constrained optimization problems have applications in engineering, economics,
computer science, just to name a few.

General form:

min f1(x), f2(x), ..., fp(x) ∀p ≥ 1
subject to gi (x) = ci ∀i = 1, n

hj(x) ≥ dj ∀j = 1,m

Solution approaches:

1. Exact methods
▶ Constrained Programming (CP)

▶ Modelling languages can be used, e.g. MiniZinc [15]
▶ Google OR-Tools [16], Gecode [17], Chuffed [6]

▶ Mathematical Programming (MP)
▶ CPLEX [1]

▶ Satisfiability Modulo Theory (SMT)
▶ Z3 [7], cvc5 [3], Yices2 [8], OpenSMT [5].

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods
▶ heuristics and metaheuristics
▶ Advantage: faster

▶ Drawback: provides a (sub)optimal solution

Motivation

Constrained optimization problems have applications in engineering, economics,
computer science, just to name a few.

General form:

min f1(x), f2(x), ..., fp(x) ∀p ≥ 1
subject to gi (x) = ci ∀i = 1, n

hj(x) ≥ dj ∀j = 1,m

Solution approaches:

1. Exact methods
▶ Constrained Programming (CP)

▶ Modelling languages can be used, e.g. MiniZinc [15]
▶ Google OR-Tools [16], Gecode [17], Chuffed [6]

▶ Mathematical Programming (MP)
▶ CPLEX [1]

▶ Satisfiability Modulo Theory (SMT)
▶ Z3 [7], cvc5 [3], Yices2 [8], OpenSMT [5].

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods
▶ heuristics and metaheuristics
▶ Advantage: faster
▶ Drawback: provides a (sub)optimal solution

Contents

Motivation

Part 1: Optimization Modulo Theory - background and examples

Part 2: Optimization Modulo Theory - Case Study
Problem Specification
Problem Formalization

Model-driven approach: Formulation of the Satisfiability/Optimization Modulo Theory
Problem
Data-driven approach: Graph Neural Network Formulation

Solution
Dataset generation
Training a GNN model for edge classification
Integrated GNN and Exact Techniques: Experimental Results

Future Work

Satisfiability Modulo Theory (SMT)

▶ Satisfiability is the problem of determining if a formula has a model.

▶ In the propositional case, a model is a truth assignment to the Boolean
variables.

▶ In the first-order (FO) case, a model assigns values from a domain to
variables and interpretations over the domain to the function and predicate
symbols.

▶ Automated reasoning failure: proof-search procedures for full FO logic ⇝
is FO logic the best compromise between expressivity and efficiency?

▶ Gain efficiency by:

▶ addressing only (expressive enough) decidable fragments of a certain logic.

▶ incorporate domain-specific reasoning, e.g: arithmetic, equality, data
structures (arrays, lists, stacks, ...) and valid combinations

Satisfiability Modulo Theory (SMT)

▶ Satisfiability is the problem of determining if a formula has a model.

▶ In the propositional case, a model is a truth assignment to the Boolean
variables.

▶ In the first-order (FO) case, a model assigns values from a domain to
variables and interpretations over the domain to the function and predicate
symbols.

▶ Automated reasoning failure: proof-search procedures for full FO logic ⇝
is FO logic the best compromise between expressivity and efficiency?

▶ Gain efficiency by:

▶ addressing only (expressive enough) decidable fragments of a certain logic.

▶ incorporate domain-specific reasoning, e.g: arithmetic, equality, data
structures (arrays, lists, stacks, ...) and valid combinations

Satisfiability Modulo Theory (SMT)

▶ Satisfiability is the problem of determining if a formula has a model.

▶ In the propositional case, a model is a truth assignment to the Boolean
variables.

▶ In the first-order (FO) case, a model assigns values from a domain to
variables and interpretations over the domain to the function and predicate
symbols.

▶ Automated reasoning failure: proof-search procedures for full FO logic ⇝
is FO logic the best compromise between expressivity and efficiency?

▶ Gain efficiency by:

▶ addressing only (expressive enough) decidable fragments of a certain logic.

▶ incorporate domain-specific reasoning, e.g: arithmetic, equality, data
structures (arrays, lists, stacks, ...) and valid combinations

Satisfiability Modulo Theory (SMT)

▶ Satisfiability is the problem of determining if a formula has a model.

▶ In the propositional case, a model is a truth assignment to the Boolean
variables.

▶ In the first-order (FO) case, a model assigns values from a domain to
variables and interpretations over the domain to the function and predicate
symbols.

▶ Automated reasoning failure: proof-search procedures for full FO logic ⇝
is FO logic the best compromise between expressivity and efficiency?

▶ Gain efficiency by:

▶ addressing only (expressive enough) decidable fragments of a certain logic.

▶ incorporate domain-specific reasoning, e.g: arithmetic, equality, data
structures (arrays, lists, stacks, ...) and valid combinations

Satisfiability Modulo Theory (SMT)

▶ Satisfiability is the problem of determining if a formula has a model.

▶ In the propositional case, a model is a truth assignment to the Boolean
variables.

▶ In the first-order (FO) case, a model assigns values from a domain to
variables and interpretations over the domain to the function and predicate
symbols.

▶ Automated reasoning failure: proof-search procedures for full FO logic ⇝
is FO logic the best compromise between expressivity and efficiency?

▶ Gain efficiency by:

▶ addressing only (expressive enough) decidable fragments of a certain logic.

▶ incorporate domain-specific reasoning, e.g: arithmetic, equality, data
structures (arrays, lists, stacks, ...) and valid combinations

Satisfiability Modulo Theory (SMT)

▶ Satisfiability is the problem of determining if a formula has a model.

▶ In the propositional case, a model is a truth assignment to the Boolean
variables.

▶ In the first-order (FO) case, a model assigns values from a domain to
variables and interpretations over the domain to the function and predicate
symbols.

▶ Automated reasoning failure: proof-search procedures for full FO logic ⇝
is FO logic the best compromise between expressivity and efficiency?

▶ Gain efficiency by:
▶ addressing only (expressive enough) decidable fragments of a certain logic.

▶ incorporate domain-specific reasoning, e.g: arithmetic, equality, data
structures (arrays, lists, stacks, ...) and valid combinations

Satisfiability Modulo Theory (SMT)

▶ Satisfiability is the problem of determining if a formula has a model.

▶ In the propositional case, a model is a truth assignment to the Boolean
variables.

▶ In the first-order (FO) case, a model assigns values from a domain to
variables and interpretations over the domain to the function and predicate
symbols.

▶ Automated reasoning failure: proof-search procedures for full FO logic ⇝
is FO logic the best compromise between expressivity and efficiency?

▶ Gain efficiency by:
▶ addressing only (expressive enough) decidable fragments of a certain logic.

▶ incorporate domain-specific reasoning, e.g: arithmetic, equality, data
structures (arrays, lists, stacks, ...) and valid combinations

Satisfiability (SMT) and Optimization Modulo Theory (OMT) (cont’d)

▶ SAT: uses propositional logic as the formalization language

▶ +: high degree of efficiency

▶ −: expressive but complex encodings

▶ SMT: propositional logic + domain-specific reasoning

▶ + better expressivity

▶ − certain (but acceptable) loss of efficiency

▶ SAT competition: https://satcompetition.github.io/

▶ SMT competition: https://smt-comp.github.io/

▶ Some SMT solvers offer optimization features ⇝ optimization modulo
theory (OMT): Z3 [4], OptiMathSAT [18]; Symba [13], HAZEL [14],
MAXHS-MSAT [10], PULI [11], CEGIO [2], BCLT [12].

Satisfiability (SMT) and Optimization Modulo Theory (OMT) (cont’d)

▶ SAT: uses propositional logic as the formalization language

▶ +: high degree of efficiency

▶ −: expressive but complex encodings

▶ SMT: propositional logic + domain-specific reasoning

▶ + better expressivity

▶ − certain (but acceptable) loss of efficiency

▶ SAT competition: https://satcompetition.github.io/

▶ SMT competition: https://smt-comp.github.io/

▶ Some SMT solvers offer optimization features ⇝ optimization modulo
theory (OMT): Z3 [4], OptiMathSAT [18]; Symba [13], HAZEL [14],
MAXHS-MSAT [10], PULI [11], CEGIO [2], BCLT [12].

Satisfiability (SMT) and Optimization Modulo Theory (OMT) (cont’d)

▶ SAT: uses propositional logic as the formalization language

▶ +: high degree of efficiency

▶ −: expressive but complex encodings

▶ SMT: propositional logic + domain-specific reasoning

▶ + better expressivity

▶ − certain (but acceptable) loss of efficiency

▶ SAT competition: https://satcompetition.github.io/

▶ SMT competition: https://smt-comp.github.io/

▶ Some SMT solvers offer optimization features ⇝ optimization modulo
theory (OMT): Z3 [4], OptiMathSAT [18]; Symba [13], HAZEL [14],
MAXHS-MSAT [10], PULI [11], CEGIO [2], BCLT [12].

Satisfiability (SMT) and Optimization Modulo Theory (OMT) (cont’d)

▶ SAT: uses propositional logic as the formalization language

▶ +: high degree of efficiency

▶ −: expressive but complex encodings

▶ SMT: propositional logic + domain-specific reasoning

▶ + better expressivity

▶ − certain (but acceptable) loss of efficiency

▶ SAT competition: https://satcompetition.github.io/

▶ SMT competition: https://smt-comp.github.io/

▶ Some SMT solvers offer optimization features ⇝ optimization modulo
theory (OMT): Z3 [4], OptiMathSAT [18]; Symba [13], HAZEL [14],
MAXHS-MSAT [10], PULI [11], CEGIO [2], BCLT [12].

Satisfiability (SMT) and Optimization Modulo Theory (OMT) (cont’d)

▶ SAT: uses propositional logic as the formalization language

▶ +: high degree of efficiency

▶ −: expressive but complex encodings

▶ SMT: propositional logic + domain-specific reasoning

▶ + better expressivity

▶ − certain (but acceptable) loss of efficiency

▶ SAT competition: https://satcompetition.github.io/

▶ SMT competition: https://smt-comp.github.io/

▶ Some SMT solvers offer optimization features ⇝ optimization modulo
theory (OMT): Z3 [4], OptiMathSAT [18]; Symba [13], HAZEL [14],
MAXHS-MSAT [10], PULI [11], CEGIO [2], BCLT [12].

Satisfiability (SMT) and Optimization Modulo Theory (OMT) (cont’d)

▶ SAT: uses propositional logic as the formalization language

▶ +: high degree of efficiency

▶ −: expressive but complex encodings

▶ SMT: propositional logic + domain-specific reasoning

▶ + better expressivity

▶ − certain (but acceptable) loss of efficiency

▶ SAT competition: https://satcompetition.github.io/

▶ SMT competition: https://smt-comp.github.io/

▶ Some SMT solvers offer optimization features ⇝ optimization modulo
theory (OMT): Z3 [4], OptiMathSAT [18]; Symba [13], HAZEL [14],
MAXHS-MSAT [10], PULI [11], CEGIO [2], BCLT [12].

Satisfiability (SMT) and Optimization Modulo Theory (OMT) (cont’d)

▶ SAT: uses propositional logic as the formalization language

▶ +: high degree of efficiency

▶ −: expressive but complex encodings

▶ SMT: propositional logic + domain-specific reasoning

▶ + better expressivity

▶ − certain (but acceptable) loss of efficiency

▶ SAT competition: https://satcompetition.github.io/

▶ SMT competition: https://smt-comp.github.io/

▶ Some SMT solvers offer optimization features ⇝ optimization modulo
theory (OMT): Z3 [4], OptiMathSAT [18]; Symba [13], HAZEL [14],
MAXHS-MSAT [10], PULI [11], CEGIO [2], BCLT [12].

Satisfiability (SMT) and Optimization Modulo Theory (OMT) (cont’d)

▶ SAT: uses propositional logic as the formalization language

▶ +: high degree of efficiency

▶ −: expressive but complex encodings

▶ SMT: propositional logic + domain-specific reasoning

▶ + better expressivity

▶ − certain (but acceptable) loss of efficiency

▶ SAT competition: https://satcompetition.github.io/

▶ SMT competition: https://smt-comp.github.io/

▶ Some SMT solvers offer optimization features ⇝ optimization modulo
theory (OMT): Z3 [4], OptiMathSAT [18]; Symba [13], HAZEL [14],
MAXHS-MSAT [10], PULI [11], CEGIO [2], BCLT [12].

Satisfiability (SMT) and Optimization Modulo Theory (OMT) (cont’d)

▶ SAT: uses propositional logic as the formalization language

▶ +: high degree of efficiency

▶ −: expressive but complex encodings

▶ SMT: propositional logic + domain-specific reasoning

▶ + better expressivity

▶ − certain (but acceptable) loss of efficiency

▶ SAT competition: https://satcompetition.github.io/

▶ SMT competition: https://smt-comp.github.io/

▶ Some SMT solvers offer optimization features ⇝ optimization modulo
theory (OMT): Z3 [4], OptiMathSAT [18]; Symba [13], HAZEL [14],
MAXHS-MSAT [10], PULI [11], CEGIO [2], BCLT [12].

Satisfiability (SMT) and Optimization Modulo Theory (OMT) (cont’d)

▶ SAT: uses propositional logic as the formalization language

▶ +: high degree of efficiency

▶ −: expressive but complex encodings

▶ SMT: propositional logic + domain-specific reasoning

▶ + better expressivity

▶ − certain (but acceptable) loss of efficiency

▶ SAT competition: https://satcompetition.github.io/

▶ SMT competition: https://smt-comp.github.io/

▶ Some SMT solvers offer optimization features ⇝ optimization modulo
theory (OMT): Z3 [4], OptiMathSAT [18]; Symba [13], HAZEL [14],
MAXHS-MSAT [10], PULI [11], CEGIO [2], BCLT [12].

SMT Theories

Quantifier-free equality logic with uninterpreted functions
(a = c ∧ b = d) → f (a, b) = f (c, d)
Quantifier-free bit-vector arithmetic

a+ b ≥ 0 ∧ (a|b) ≤ (a&b)
Quantifier-free array theory

i = j → read(write(a, i , v), j) = v
Quantifier-free integer/rational difference logic

x − y ≥ 0 ∨ x − z < 0
(Quantifier-free) real/integer linear arithmetic

4x + 7y = 8 ∧ (y = 0 ∨ x > y)
(Quantifier-free) real/integer non-linear arithmetic

x2 + 2xy + y 2 > 0 ∨ (x ≥ 1 ∧ xz + yz2 = 0)
Combined theories

2f (x) + 5y > 0 ∧ ¬(f (x) = y ∨ x + 2y = 0)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

SMT Theories

Quantifier-free equality logic with uninterpreted functions
(a = c ∧ b = d) → f (a, b) = f (c, d)

Quantifier-free bit-vector arithmetic
a+ b ≥ 0 ∧ (a|b) ≤ (a&b)
Quantifier-free array theory

i = j → read(write(a, i , v), j) = v
Quantifier-free integer/rational difference logic

x − y ≥ 0 ∨ x − z < 0
(Quantifier-free) real/integer linear arithmetic

4x + 7y = 8 ∧ (y = 0 ∨ x > y)
(Quantifier-free) real/integer non-linear arithmetic

x2 + 2xy + y 2 > 0 ∨ (x ≥ 1 ∧ xz + yz2 = 0)
Combined theories

2f (x) + 5y > 0 ∧ ¬(f (x) = y ∨ x + 2y = 0)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

SMT Theories

Quantifier-free equality logic with uninterpreted functions
(a = c ∧ b = d) → f (a, b) = f (c, d)

Quantifier-free bit-vector arithmetic
a+ b ≥ 0 ∧ (a|b) ≤ (a&b)

Quantifier-free array theory
i = j → read(write(a, i , v), j) = v

Quantifier-free integer/rational difference logic
x − y ≥ 0 ∨ x − z < 0

(Quantifier-free) real/integer linear arithmetic
4x + 7y = 8 ∧ (y = 0 ∨ x > y)

(Quantifier-free) real/integer non-linear arithmetic
x2 + 2xy + y 2 > 0 ∨ (x ≥ 1 ∧ xz + yz2 = 0)

Combined theories
2f (x) + 5y > 0 ∧ ¬(f (x) = y ∨ x + 2y = 0)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

SMT Theories

Quantifier-free equality logic with uninterpreted functions
(a = c ∧ b = d) → f (a, b) = f (c, d)
Quantifier-free bit-vector arithmetic

a+ b ≥ 0 ∧ (a|b) ≤ (a&b)

Quantifier-free array theory
i = j → read(write(a, i , v), j) = v

Quantifier-free integer/rational difference logic
x − y ≥ 0 ∨ x − z < 0

(Quantifier-free) real/integer linear arithmetic
4x + 7y = 8 ∧ (y = 0 ∨ x > y)

(Quantifier-free) real/integer non-linear arithmetic
x2 + 2xy + y 2 > 0 ∨ (x ≥ 1 ∧ xz + yz2 = 0)

Combined theories
2f (x) + 5y > 0 ∧ ¬(f (x) = y ∨ x + 2y = 0)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

SMT Theories

Quantifier-free equality logic with uninterpreted functions
(a = c ∧ b = d) → f (a, b) = f (c, d)
Quantifier-free bit-vector arithmetic

a+ b ≥ 0 ∧ (a|b) ≤ (a&b)
Quantifier-free array theory

i = j → read(write(a, i , v), j) = v

Quantifier-free integer/rational difference logic
x − y ≥ 0 ∨ x − z < 0

(Quantifier-free) real/integer linear arithmetic
4x + 7y = 8 ∧ (y = 0 ∨ x > y)

(Quantifier-free) real/integer non-linear arithmetic
x2 + 2xy + y 2 > 0 ∨ (x ≥ 1 ∧ xz + yz2 = 0)

Combined theories
2f (x) + 5y > 0 ∧ ¬(f (x) = y ∨ x + 2y = 0)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

SMT Theories

Quantifier-free equality logic with uninterpreted functions
(a = c ∧ b = d) → f (a, b) = f (c, d)
Quantifier-free bit-vector arithmetic

a+ b ≥ 0 ∧ (a|b) ≤ (a&b)
Quantifier-free array theory

i = j → read(write(a, i , v), j) = v
Quantifier-free integer/rational difference logic

x − y ≥ 0 ∨ x − z < 0

(Quantifier-free) real/integer linear arithmetic
4x + 7y = 8 ∧ (y = 0 ∨ x > y)

(Quantifier-free) real/integer non-linear arithmetic
x2 + 2xy + y 2 > 0 ∨ (x ≥ 1 ∧ xz + yz2 = 0)

Combined theories
2f (x) + 5y > 0 ∧ ¬(f (x) = y ∨ x + 2y = 0)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

SMT Theories

Quantifier-free equality logic with uninterpreted functions
(a = c ∧ b = d) → f (a, b) = f (c, d)
Quantifier-free bit-vector arithmetic

a+ b ≥ 0 ∧ (a|b) ≤ (a&b)
Quantifier-free array theory

i = j → read(write(a, i , v), j) = v
Quantifier-free integer/rational difference logic

x − y ≥ 0 ∨ x − z < 0
(Quantifier-free) real/integer linear arithmetic

4x + 7y = 8 ∧ (y = 0 ∨ x > y)

(Quantifier-free) real/integer non-linear arithmetic
x2 + 2xy + y 2 > 0 ∨ (x ≥ 1 ∧ xz + yz2 = 0)

Combined theories
2f (x) + 5y > 0 ∧ ¬(f (x) = y ∨ x + 2y = 0)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

SMT Theories

Quantifier-free equality logic with uninterpreted functions
(a = c ∧ b = d) → f (a, b) = f (c, d)
Quantifier-free bit-vector arithmetic

a+ b ≥ 0 ∧ (a|b) ≤ (a&b)
Quantifier-free array theory

i = j → read(write(a, i , v), j) = v
Quantifier-free integer/rational difference logic

x − y ≥ 0 ∨ x − z < 0
(Quantifier-free) real/integer linear arithmetic

4x + 7y = 8 ∧ (y = 0 ∨ x > y)
(Quantifier-free) real/integer non-linear arithmetic

x2 + 2xy + y 2 > 0 ∨ (x ≥ 1 ∧ xz + yz2 = 0)

Combined theories
2f (x) + 5y > 0 ∧ ¬(f (x) = y ∨ x + 2y = 0)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

How an extension to SMT solving looks like?

There are basically two different approaches:

▶ Eager SMT solving transforms logical formulas over some theories into
satisfiability-equivalent propositional logic formulas and applies SAT
solving. (“Eager” means theory first)

▶ Lazy SMT solving uses a SAT solver to find solutions for the Boolean
skeleton of the formula, and a theory solver to check satisfiability in the
underlying theory. (“Lazy” means theory later)

Lazy SMT solving

SAT-solver

φ

(In)equation set Explanation

Theory solver

UNSAT

SAT

Boolean abstraction

satisfiable

unsatisfiable

unsatisfiable

satisfiable

Running Example

Assume that we have three virtual machines (VMs) which require 100, 50 and
15 GB hard disk respectively. There are three servers with capabilities 100, 75
and 200 GB in that order. Find out a way to place VMs into servers in order
to:

▶ Minimize the number of servers used.

▶ Minimize the operation cost (the servers have fixed daily costs 10, 5 and
20 USD respectively.)

Formalization. Let xij denote that VM i is placed on the server j and yj denote
that server j is in use.

Running Example

Assume that we have three virtual machines (VMs) which require 100, 50 and
15 GB hard disk respectively. There are three servers with capabilities 100, 75
and 200 GB in that order. Find out a way to place VMs into servers in order
to:

▶ Minimize the number of servers used.

▶ Minimize the operation cost (the servers have fixed daily costs 10, 5 and
20 USD respectively.)

Formalization. Let xij denote that VM i is placed on the server j and yj denote
that server j is in use.

Running Example (cont’d)

Assume that we have three virtual machines (VMs) which require 100, 50 and
15 GB hard disk respectively. There are three servers with capabilities 100, 75
and 200 GB in that order. Find out a way to place VMs into servers in order
to:

▶ Minimize the number of servers used.

▶ Minimize the operation cost (the servers have fixed daily costs 10, 5 and
20 USD respectively.)

Solution. Choosing the suitable underlying theory is determined by the
principles of the formalization: xij , yj ∈ {0, 1}
▶ linear constraints with integer variables with 0,1 restriction

▶ linear constraints with real variables with 0,1 restriction

▶ linear constraints boolean variables

Running Example (cont’d)

Assume that we have three virtual machines (VMs) which require 100, 50 and
15 GB hard disk respectively. There are three servers with capabilities 100, 75
and 200 GB in that order. Find out a way to place VMs into servers in order
to:

▶ Minimize the number of servers used.

▶ Minimize the operation cost (the servers have fixed daily costs 10, 5 and
20 USD respectively.)

Solution. Writing the constraints keeping in mind the underlying theory.
Assume the case: linear constraints with integer variables with 0,1 restriction
▶ Implicit constraints

▶ Variables are integers:

xij , yj ∈ Z, ∀i , j = 1, 3

▶ Variables have only 0,1 value:

xij = 0 ∨ xij = 1, ∀i , j = 1, 3

▶ A VM is on exactly one server:

xi1 + xi2 + xi3 = 1, ∀i = 1, 3

▶ A used server has at least a VM on it:

(yj ≥ x1j) ∧ (yj ≥ x2j) ∧ (yj ≥ x3j), j = 1, 3

Running Example (cont’d)

Assume that we have three virtual machines (VMs) which require 100, 50 and
15 GB hard disk respectively. There are three servers with capabilities 100, 75
and 200 GB in that order. Find out a way to place VMs into servers in order
to:

▶ Minimize the number of servers used.

▶ Minimize the operation cost (the servers have fixed daily costs 10, 5 and
20 USD respectively.)

Solution. Writing the constraints keeping in mind the underlying theory.
Assume the case: linear constraints with integer variables with 0,1 restriction
▶ Implicit constraints

▶ Variables are integers:

xij , yj ∈ Z, ∀i , j = 1, 3

▶ Variables have only 0,1 value:

xij = 0 ∨ xij = 1, ∀i , j = 1, 3

▶ A VM is on exactly one server:

xi1 + xi2 + xi3 = 1, ∀i = 1, 3

▶ A used server has at least a VM on it:

(yj ≥ x1j) ∧ (yj ≥ x2j) ∧ (yj ≥ x3j), j = 1, 3

Running Example (cont’d)

Assume that we have three virtual machines (VMs) which require 100, 50 and
15 GB hard disk respectively. There are three servers with capabilities 100, 75
and 200 GB in that order. Find out a way to place VMs into servers in order
to:

▶ Minimize the number of servers used.

▶ Minimize the operation cost (the servers have fixed daily costs 10, 5 and
20 USD respectively.)

Solution. Writing the constraints keeping in mind the underlying theory.
Assume the case: linear constraints with integer variables with 0,1 restriction
▶ Implicit constraints

▶ Variables are integers:

xij , yj ∈ Z, ∀i , j = 1, 3

▶ Variables have only 0,1 value:

xij = 0 ∨ xij = 1, ∀i , j = 1, 3

▶ A VM is on exactly one server:

xi1 + xi2 + xi3 = 1, ∀i = 1, 3

▶ A used server has at least a VM on it:

(yj ≥ x1j) ∧ (yj ≥ x2j) ∧ (yj ≥ x3j), j = 1, 3

Running Example (cont’d)

Assume that we have three virtual machines (VMs) which require 100, 50 and
15 GB hard disk respectively. There are three servers with capabilities 100, 75
and 200 GB in that order. Find out a way to place VMs into servers in order
to:

▶ Minimize the number of servers used.

▶ Minimize the operation cost (the servers have fixed daily costs 10, 5 and
20 USD respectively.)

Solution. Writing the constraints keeping in mind the underlying theory.
Assume the case: linear constraints with integer variables with 0,1 restriction
▶ Implicit constraints

▶ Variables are integers:

xij , yj ∈ Z, ∀i , j = 1, 3

▶ Variables have only 0,1 value:

xij = 0 ∨ xij = 1, ∀i , j = 1, 3

▶ A VM is on exactly one server:

xi1 + xi2 + xi3 = 1, ∀i = 1, 3

▶ A used server has at least a VM on it:

(yj ≥ x1j) ∧ (yj ≥ x2j) ∧ (yj ≥ x3j), j = 1, 3

Running Example (cont’d)

Assume that we have three virtual machines (VMs) which require 100, 50 and
15 GB hard disk respectively. There are three servers with capabilities 100, 75
and 200 GB in that order. Find out a way to place VMs into servers in order
to:

▶ Minimize the number of servers used.

▶ Minimize the operation cost (the servers have fixed daily costs 10, 5 and
20 USD respectively.)

Solution. Writing the constraints keeping in mind the underlying theory.
Assume the case: linear constraints with integer variables with 0,1 restriction
▶ Implicit constraints

▶ Variables are integers:

xij , yj ∈ Z, ∀i , j = 1, 3

▶ Variables have only 0,1 value:

xij = 0 ∨ xij = 1, ∀i , j = 1, 3

▶ A VM is on exactly one server:

xi1 + xi2 + xi3 = 1, ∀i = 1, 3

▶ A used server has at least a VM on it:

(yj ≥ x1j) ∧ (yj ≥ x2j) ∧ (yj ≥ x3j), j = 1, 3

Running Example (cont’d)

Assume that we have three virtual machines (VMs) which require 100, 50 and
15 GB hard disk respectively. There are three servers with capabilities 100, 75
and 200 GB in that order. Find out a way to place VMs into servers in order
to:

▶ Minimize the number of servers used.

▶ Minimize the operation cost (the servers have fixed daily costs 10, 5 and
20 USD respectively.)

Solution. Writing the constraints keeping in mind the underlying theory.
Assume the case: linear constraints with integer variables with 0,1 restriction
▶ Explicit constraints

▶ Capacity constraints:
100x11 + 50x21 + 15x31 ≤ 100y1
100x12 + 50x22 + 15x32 ≤ 75y2
100x13 + 50x23 + 15x33 ≤ 200y3

▶ Optimization functions

▶ 10y1 + 5y2 + 20y3
▶ y1 + y2 + y3

Running Example (cont’d)

Assume that we have three virtual machines (VMs) which require 100, 50 and
15 GB hard disk respectively. There are three servers with capabilities 100, 75
and 200 GB in that order. Find out a way to place VMs into servers in order
to:

▶ Minimize the number of servers used.

▶ Minimize the operation cost (the servers have fixed daily costs 10, 5 and
20 USD respectively.)

Solution. Writing the constraints keeping in mind the underlying theory.
Assume the case: linear constraints with integer variables with 0,1 restriction
▶ Explicit constraints

▶ Capacity constraints:
100x11 + 50x21 + 15x31 ≤ 100y1
100x12 + 50x22 + 15x32 ≤ 75y2
100x13 + 50x23 + 15x33 ≤ 200y3

▶ Optimization functions

▶ 10y1 + 5y2 + 20y3
▶ y1 + y2 + y3

Running Example (cont’d)

Assume that we have three virtual machines (VMs) which require 100, 50 and
15 GB hard disk respectively. There are three servers with capabilities 100, 75
and 200 GB in that order. Find out a way to place VMs into servers in order
to:

▶ Minimize the number of servers used.

▶ Minimize the operation cost (the servers have fixed daily costs 10, 5 and
20 USD respectively.)

Solution. Writing the constraints keeping in mind the underlying theory.
Assume the case: linear constraints with integer variables with 0,1 restriction
▶ Explicit constraints

▶ Capacity constraints:
100x11 + 50x21 + 15x31 ≤ 100y1
100x12 + 50x22 + 15x32 ≤ 75y2
100x13 + 50x23 + 15x33 ≤ 200y3

▶ Optimization functions

▶ 10y1 + 5y2 + 20y3
▶ y1 + y2 + y3

Running Example (cont’d)

Assume that we have three virtual machines (VMs) which require 100, 50 and
15 GB hard disk respectively. There are three servers with capabilities 100, 75
and 200 GB in that order. Find out a way to place VMs into servers in order
to:

▶ Minimize the number of servers used.

▶ Minimize the operation cost (the servers have fixed daily costs 10, 5 and
20 USD respectively.)

Solution. Writing the constraints keeping in mind the underlying theory.
Assume the case: linear constraints with integer variables with 0,1 restriction
▶ Explicit constraints

▶ Capacity constraints:
100x11 + 50x21 + 15x31 ≤ 100y1
100x12 + 50x22 + 15x32 ≤ 75y2
100x13 + 50x23 + 15x33 ≤ 200y3

▶ Optimization functions
▶ 10y1 + 5y2 + 20y3
▶ y1 + y2 + y3

Running Example (cont’d)

Assume that we have three virtual machines (VMs) which require 100, 50 and
15 GB hard disk respectively. There are three servers with capabilities 100, 75
and 200 GB in that order. Find out a way to place VMs into servers in order
to:

▶ Minimize the number of servers used.

▶ Minimize the operation cost (the servers have fixed daily costs 10, 5 and
20 USD respectively.)

Solution approaches.

1. Formalization in SMT-LIB2 format: useful for toy examples, some SMT
tools are available online to try their capabilities.

▶ variant-int.smt2
▶ variant-bool.smt2

2. Formalization by programming Z3, in particular Python API.

Is the order of the optimization functions important?

Running Example (cont’d)

Assume that we have three virtual machines (VMs) which require 100, 50 and
15 GB hard disk respectively. There are three servers with capabilities 100, 75
and 200 GB in that order. Find out a way to place VMs into servers in order
to:

▶ Minimize the number of servers used.

▶ Minimize the operation cost (the servers have fixed daily costs 10, 5 and
20 USD respectively.)

Solution approaches.

1. Formalization in SMT-LIB2 format: useful for toy examples, some SMT
tools are available online to try their capabilities.

▶ variant-int.smt2
▶ variant-bool.smt2

2. Formalization by programming Z3, in particular Python API.

Is the order of the optimization functions important?

Running Example (cont’d)

Assume that we have three virtual machines (VMs) which require 100, 50 and
15 GB hard disk respectively. There are three servers with capabilities 100, 75
and 200 GB in that order. Find out a way to place VMs into servers in order
to:

▶ Minimize the number of servers used.

▶ Minimize the operation cost (the servers have fixed daily costs 10, 5 and
20 USD respectively.)

Solution approaches.

1. Formalization in SMT-LIB2 format: useful for toy examples, some SMT
tools are available online to try their capabilities.
▶ variant-int.smt2

▶ variant-bool.smt2

2. Formalization by programming Z3, in particular Python API.

Is the order of the optimization functions important?

Running Example (cont’d)

Assume that we have three virtual machines (VMs) which require 100, 50 and
15 GB hard disk respectively. There are three servers with capabilities 100, 75
and 200 GB in that order. Find out a way to place VMs into servers in order
to:

▶ Minimize the number of servers used.

▶ Minimize the operation cost (the servers have fixed daily costs 10, 5 and
20 USD respectively.)

Solution approaches.

1. Formalization in SMT-LIB2 format: useful for toy examples, some SMT
tools are available online to try their capabilities.
▶ variant-int.smt2
▶ variant-bool.smt2

2. Formalization by programming Z3, in particular Python API.

Is the order of the optimization functions important?

Running Example (cont’d)

Assume that we have three virtual machines (VMs) which require 100, 50 and
15 GB hard disk respectively. There are three servers with capabilities 100, 75
and 200 GB in that order. Find out a way to place VMs into servers in order
to:

▶ Minimize the number of servers used.

▶ Minimize the operation cost (the servers have fixed daily costs 10, 5 and
20 USD respectively.)

Solution approaches.

1. Formalization in SMT-LIB2 format: useful for toy examples, some SMT
tools are available online to try their capabilities.
▶ variant-int.smt2
▶ variant-bool.smt2

2. Formalization by programming Z3, in particular Python API.

Is the order of the optimization functions important?

Types of optimization (in Z3)

Single-criteria optimization:
OMT (LIRA∪T),OMT (BV∪T),OMT (PB∪T) and MAXSMT solving [19].

Multi-criteria optimization
To the best of our knowledge, in the SMT solver Z3, there are three ways to
combine objective functions.

1. lexicographic combinations (by default) variant-int.smt2

Algorithm 1 Sequential algorithm for general objectives

1: for t = 1 to n do
2: Solve the single-objective problem:

max ft(x)

subject to x ∈ X ,

fk(x) ≥ zk for all k ∈ 1, . . . , t − 1.

3: if the problem is infeasible or unbounded then
4: print ”no solution”
5: else
6: Add as additional constraints the values of the decision variables x and fk(x)=

zt
7: end if
8: end for

Types of optimization (in Z3)

Single-criteria optimization:
OMT (LIRA∪T),OMT (BV∪T),OMT (PB∪T) and MAXSMT solving [19].
Multi-criteria optimization
To the best of our knowledge, in the SMT solver Z3, there are three ways to
combine objective functions.

1. lexicographic combinations (by default) variant-int.smt2

Algorithm 2 Sequential algorithm for general objectives

1: for t = 1 to n do
2: Solve the single-objective problem:

max ft(x)

subject to x ∈ X ,

fk(x) ≥ zk for all k ∈ 1, . . . , t − 1.

3: if the problem is infeasible or unbounded then
4: print ”no solution”
5: else
6: Add as additional constraints the values of the decision variables x and fk(x)=

zt
7: end if
8: end for

Types of optimization (in Z3)

Single-criteria optimization:
OMT (LIRA∪T),OMT (BV∪T),OMT (PB∪T) and MAXSMT solving [19].
Multi-criteria optimization
To the best of our knowledge, in the SMT solver Z3, there are three ways to
combine objective functions.

1. lexicographic combinations (by default) variant-int.smt2

Algorithm 3 Sequential algorithm for general objectives

1: for t = 1 to n do
2: Solve the single-objective problem:

max ft(x)

subject to x ∈ X ,

fk(x) ≥ zk for all k ∈ 1, . . . , t − 1.

3: if the problem is infeasible or unbounded then
4: print ”no solution”
5: else
6: Add as additional constraints the values of the decision variables x and fk(x)=

zt
7: end if
8: end for

Types of optimization (in Z3) (cont’d)

2. Boxes are used to specify independent optima subject to given constraints:
variant-int-box.smt2

3. Pareto optimization involves more than one objective function to be
optimized simultaneously. variant-int-pareto.smt2

Types of optimization (in Z3) (cont’d)

2. Boxes are used to specify independent optima subject to given constraints:
variant-int-box.smt2

3. Pareto optimization involves more than one objective function to be
optimized simultaneously. variant-int-pareto.smt2

Programming Z3 (Python API)

▶ variant-int.py

▶ variant-bool.py

Programming Z3 (Python API)

▶ variant-int.py

▶ variant-bool.py

Feedback Part 1

Please fill out the form!

Contents

Motivation

Part 1: Optimization Modulo Theory - background and examples

Part 2: Optimization Modulo Theory - Case Study
Problem Specification
Problem Formalization

Model-driven approach: Formulation of the Satisfiability/Optimization Modulo Theory
Problem
Data-driven approach: Graph Neural Network Formulation

Solution
Dataset generation
Training a GNN model for edge classification
Integrated GNN and Exact Techniques: Experimental Results

Future Work

Motivation

▶ The data-driven approach focuses on using data to drive the development
and improvement of AI systems.

⇝ graph neural networks

▶ The model-based approach focuses on developing a mathematical model
of the system or process being studied.

⇝ satisfiability/optimization
modulo theory

Motivation

From Marios M. Polycarpou talk

▶ The data-driven approach focuses on using data to drive the development
and improvement of AI systems.

⇝ graph neural networks

▶ The model-based approach focuses on developing a mathematical model
of the system or process being studied.

⇝ satisfiability/optimization
modulo theory

Motivation

▶ The data-driven approach focuses on using data to drive the development
and improvement of AI systems. ⇝ graph neural networks

▶ The model-based approach focuses on developing a mathematical model
of the system or process being studied.

⇝ satisfiability/optimization
modulo theory

Motivation

▶ The data-driven approach focuses on using data to drive the development
and improvement of AI systems. ⇝ graph neural networks

▶ The model-based approach focuses on developing a mathematical model
of the system or process being studied. ⇝ satisfiability/optimization
modulo theory

Motivation (cont’d)

Advent of Cloud computing ⇝ loosely-coupled architecture ⇝ DevOps
paradigm ⇝ application modeling ⇝ optimal deployment

Benefits of optimal deployment:

1. the synthesis of deployment plans that are optimal by design

2. the integration of such deployment plans into the application modeling
process enables formal reasoning on a model of the deployed application.

Automated deployment of component-based applications in the Cloud
consists of:

1. selection of the computing resources,

2. distribution/assignment of the application components over the available
computing resources,

3. its dynamic modification to cope with peaks of user requests.

Motivation (cont’d)

Advent of Cloud computing ⇝ loosely-coupled architecture ⇝ DevOps
paradigm ⇝ application modeling ⇝ optimal deployment

Benefits of optimal deployment:

1. the synthesis of deployment plans that are optimal by design

2. the integration of such deployment plans into the application modeling
process enables formal reasoning on a model of the deployed application.

Automated deployment of component-based applications in the Cloud
consists of:

1. selection of the computing resources,

2. distribution/assignment of the application components over the available
computing resources,

3. its dynamic modification to cope with peaks of user requests.

Motivation (cont’d)

Advent of Cloud computing ⇝ loosely-coupled architecture ⇝ DevOps
paradigm ⇝ application modeling ⇝ optimal deployment

Benefits of optimal deployment:

1. the synthesis of deployment plans that are optimal by design

2. the integration of such deployment plans into the application modeling
process enables formal reasoning on a model of the deployed application.

Automated deployment of component-based applications in the Cloud
consists of:

1. selection of the computing resources,

2. distribution/assignment of the application components over the available
computing resources,

3. its dynamic modification to cope with peaks of user requests.

Motivation (cont’d)

Advent of Cloud computing ⇝ loosely-coupled architecture ⇝ DevOps
paradigm ⇝ application modeling ⇝ optimal deployment

Benefits of optimal deployment:

1. the synthesis of deployment plans that are optimal by design

2. the integration of such deployment plans into the application modeling
process enables formal reasoning on a model of the deployed application.

Automated deployment of component-based applications in the Cloud
consists of:

1. selection of the computing resources,

2. distribution/assignment of the application components over the available
computing resources,

3. its dynamic modification to cope with peaks of user requests.

Motivation (cont’d)

Advent of Cloud computing ⇝ loosely-coupled architecture ⇝ DevOps
paradigm ⇝ application modeling ⇝ optimal deployment

Benefits of optimal deployment:

1. the synthesis of deployment plans that are optimal by design

2. the integration of such deployment plans into the application modeling
process enables formal reasoning on a model of the deployed application.

Automated deployment of component-based applications in the Cloud
consists of:

1. selection of the computing resources,

2. distribution/assignment of the application components over the available
computing resources,

3. its dynamic modification to cope with peaks of user requests.

Motivation (cont’d)

Advent of Cloud computing ⇝ loosely-coupled architecture ⇝ DevOps
paradigm ⇝ application modeling ⇝ optimal deployment

Benefits of optimal deployment:

1. the synthesis of deployment plans that are optimal by design

2. the integration of such deployment plans into the application modeling
process enables formal reasoning on a model of the deployed application.

Automated deployment of component-based applications in the Cloud
consists of:

1. selection of the computing resources,

2. distribution/assignment of the application components over the available
computing resources,

3. its dynamic modification to cope with peaks of user requests.

Motivation (cont’d)

Advent of Cloud computing ⇝ loosely-coupled architecture ⇝ DevOps
paradigm ⇝ application modeling ⇝ optimal deployment

Benefits of optimal deployment:

1. the synthesis of deployment plans that are optimal by design

2. the integration of such deployment plans into the application modeling
process enables formal reasoning on a model of the deployed application.

Automated deployment of component-based applications in the Cloud
consists of:

1. selection of the computing resources,

2. distribution/assignment of the application components over the available
computing resources,

3. its dynamic modification to cope with peaks of user requests.

Motivating Example

Problem: finding the best offer for a Secure Web Container

Components

▶ two Web Containers (e.g. Apache
Tomcat or Nginx)

▶ a Balancer

▶ an IDSServer (Intrusion Detection
System)

▶ an IDS Agent

Constraints
▶ Conflicts: Apache and Nginx cannot be deployed on the same VM.
▶ Conflicts: Balancer needs exclusive use of machines.
▶ Equal bound: exactly one Balancer has to be instantiated.
▶ Lower bound: at least 3 instances of Apache and/or Nginx are required.
▶ Require-provides: one IDSServer for 10 IDS Agents.
▶ Full deployment: one instance of the IDS Agent on all VMs except for

those containing the IDSServer and the Balancer.
▶ Hardware constraints: components hardware requirements.

Goal: find a set of virtual machines (VMs) which satisfies the components
requirements and lead to the minimum cost.

Motivating Example

Problem: finding the best offer for a Secure Web Container

Components

▶ two Web Containers (e.g. Apache
Tomcat or Nginx)

▶ a Balancer

▶ an IDSServer (Intrusion Detection
System)

▶ an IDS Agent

Constraints
▶ Conflicts: Apache and Nginx cannot be deployed on the same VM.
▶ Conflicts: Balancer needs exclusive use of machines.
▶ Equal bound: exactly one Balancer has to be instantiated.
▶ Lower bound: at least 3 instances of Apache and/or Nginx are required.
▶ Require-provides: one IDSServer for 10 IDS Agents.
▶ Full deployment: one instance of the IDS Agent on all VMs except for

those containing the IDSServer and the Balancer.
▶ Hardware constraints: components hardware requirements.

Goal: find a set of virtual machines (VMs) which satisfies the components
requirements and lead to the minimum cost.

Motivating Example

Problem: finding the best offer for a Secure Web Container

Components

▶ two Web Containers (e.g. Apache
Tomcat or Nginx)

▶ a Balancer

▶ an IDSServer (Intrusion Detection
System)

▶ an IDS Agent

Constraints
▶ Conflicts: Apache and Nginx cannot be deployed on the same VM.
▶ Conflicts: Balancer needs exclusive use of machines.
▶ Equal bound: exactly one Balancer has to be instantiated.
▶ Lower bound: at least 3 instances of Apache and/or Nginx are required.
▶ Require-provides: one IDSServer for 10 IDS Agents.
▶ Full deployment: one instance of the IDS Agent on all VMs except for

those containing the IDSServer and the Balancer.
▶ Hardware constraints: components hardware requirements.

Goal: find a set of virtual machines (VMs) which satisfies the components
requirements and lead to the minimum cost.

Motivating Example (cont’d)

Remark: [snapshot from https://aws.amazon.com/ec2/] tens of thousands of
price offers corresponding to different configurations and zones

Motivating Example (cont’d)

Example solution

▶ VM1 (CPU:8, RAM: 15 GB, Storage: 2000 GB, Price: 0.0526 $/hour):
Nginx + IDS Agent

▶ VM2 (CPU:4, RAM: 7.5 GB, Storage: 2000 GB, Price: 0.0283 $/hour):
Balancer

▶ VM3 (CPU:4, RAM: 30 GB, Storage: 2000 GB, Price: 0.0644 $/hour):
IDSServer

▶ VM4 (CPU:4, RAM: 7.5 GB, Storage: 2000 GB, Price: 0.0283 $/hour):
Apache + IDS Agent

▶ VM5 (CPU:4, RAM: 7.5 GB, Storage: 2000 GB, Price: 0.0283 $/hour):
Apache + IDS Agent

Contents

Motivation

Part 1: Optimization Modulo Theory - background and examples

Part 2: Optimization Modulo Theory - Case Study
Problem Specification
Problem Formalization

Model-driven approach: Formulation of the Satisfiability/Optimization Modulo Theory
Problem
Data-driven approach: Graph Neural Network Formulation

Solution
Dataset generation
Training a GNN model for edge classification
Integrated GNN and Exact Techniques: Experimental Results

Future Work

Problem Specification

Automated deployment of component-based applications in the Cloud
consists of:

1. selection of the computing resources,

2. distribution/assignment of the application components over the available
computing resources,

3. dynamic modification to cope with peaks of user requests.

SAGE

SAGE

Predeployer

SAGEOpt Translator

Optimal

Solution

App

Description

Cloud

Offers

SAGE

manifest

files

Boreas

manifest

files

K8s

manifest

files
K8s Cluster

Figure: SAGE General Architecture

Contents

Motivation

Part 1: Optimization Modulo Theory - background and examples

Part 2: Optimization Modulo Theory - Case Study
Problem Specification
Problem Formalization

Model-driven approach: Formulation of the Satisfiability/Optimization Modulo Theory
Problem
Data-driven approach: Graph Neural Network Formulation

Solution
Dataset generation
Training a GNN model for edge classification
Integrated GNN and Exact Techniques: Experimental Results

Future Work

Recall Motivating Example

Problem: finding the best offer for a Secure Web Container

Components

▶ two Web Containers (e.g. Apache
Tomcat or Nginx)

▶ a Balancer

▶ an IDSServer (Intrusion Detection
System)

▶ an IDS Agent

Constraints
▶ Conflicts: Apache and Nginx cannot be deployed on the same VM.
▶ Conflicts: Balancer needs exclusive use of machines.
▶ Equal bound: exactly one Balancer has to be instantiated.
▶ Lower bound: at least 3 instances of Apache and/or Nginx are required.
▶ Require-provides: one IDSServer for 10 IDS Agents.
▶ Full deployment: one instance of the IDS Agent on all VMs except for

those containing the IDSServer and the Balancer.
▶ Hardware constraints: components hardware requirements.

Goal: find a set of virtual machines (VMs) which satisfies the components
requirements and lead to the minimum cost.

Model-driven approach: Formulation of the Satisfiability/Optimization
Modulo Theory Problem

General constraints

Basic allocation
M∑
k=1

aik ≥ 1 ∀i = 1,N

Occupancy
N∑
i=1

aik ≥ 1 ⇒ vk = 1 ∀k = 1,M

Capacity
N∑
i=1

aik · Rh
i ≤ F h

tk ∀k = 1,M, ∀h = 1,H

Link vk=1 ∧ tk=o ⇒
H∧

h=1

(
rhk=F

h
tk

)
∧ pk=Ptk ∀o = 1,O, O ∈ N∗∑N

i=1 aik = 0 ⇒ tk = 0 ∀k = 1,M

where:

▶ Rh
i ∈ N∗ is the hardware requirement of type h of the component i ;

▶ F h
tk ∈ N∗ is the hardware characteristic h of the VM of type tk .

Problem Formalization (cont’d)

Application-specific constraints

Conflicts aik + ajk ≤ 1 ∀k = 1,M, ∀(i , j) Rij = 1

Co-location aik = ajk ∀k = 1,M, ∀(i , j) Dij = 1
Exclusive deployment

H
(

M∑
k=1

ai1k

)
+ ...+H

(
M∑
k=1

aiqk

)
= 1 for fixed q ∈ {1, ...,N}

H(u) =

{
1 u > 0

0 u = 0

Require- Provide

nij
M∑
k=1

aik ≤ mij

M∑
k=1

ajk ∀(i , j)Qij(nij ,mij) = 1

0 ≤ n
M∑
k=1

ajk −
M∑
k=1

aik < n n, nij ,mij ∈ N∗

where:
▶ Rij = 1 if components i and j are in conflict (can not be placed in the

same VM);
▶ Dij = 1 if components i and j must be co-located (must be placed in the

same VM);
▶ Qij(n,m)=1 if Ci requires at least n instances of Cj and Cj can serve at

most m instances of Ci

Problem Formalization (cont’d)

Application-specific constraints

Full deployment
M∑
k=1

(
aik +H

(∑
j,Rij=1

ajk

))
=

M∑
k=1

vk

Deployment with bounded number of instances∑
i∈C

M∑
k=1

aik⟨op⟩n |C | ≤ N, ⟨op⟩∈{=,≤,≥}, n∈N

Find:

▶ assignment matrix a with binary entries aik ∈ {0, 1} for i = 1,N,
k = 1,M, which are interpreted as follows:

aik =

{
1 if Ci is assigned to Vk

0 if Ci is not assigned to Vk .

▶ the type selection vector t with integer entries tk for k = 1,M,
representing the type (from a predefined set) of each VM leased.

Such that: the leasing price is minimal
M∑
k=1

vk · pk

Graph Neural Network Formulation

The first step in solving the edge classification problem is to model it as graph
data.

Heterogeneous graph:

▶ component nodes

▶ The features are (ID, CPU, Mem, Sto, FullDepl, UpperB, LowerB, EqualB).
▶ Edges between component nodes are determined by the application-specific

constraints except FullDepl, UpperB, LowerB, EqualB.
▶ Edges are specified using one-hot encoding on the possible application-

specific constraints: (Conflict, Co-location, RequireProvide,
ExclusiveDeployment, UpperB, LowerB, EqualB).

▶ VM nodes

▶ The features are (CPU, Mem, Sto, Price)
▶ No edges between two VM nodes!

Feature scaling:

▶ to [0, 1] is needed in order to prevent one feature from dominating while
preserving min-max relationships, crucial for prediction algorithms

▶ is needed for the hardware specifications/requirements and the VM price.

Edge classification

▶ Initially, all edges between a node of type component and one of type VM
are of type unlinked.

The task is to implement a GNN model in order to predict the type
(linked/unlinked) for all the edges.

Graph Neural Network Formulation

The first step in solving the edge classification problem is to model it as graph
data.
Heterogeneous graph:

▶ component nodes

▶ The features are (ID, CPU, Mem, Sto, FullDepl, UpperB, LowerB, EqualB).
▶ Edges between component nodes are determined by the application-specific

constraints except FullDepl, UpperB, LowerB, EqualB.
▶ Edges are specified using one-hot encoding on the possible application-

specific constraints: (Conflict, Co-location, RequireProvide,
ExclusiveDeployment, UpperB, LowerB, EqualB).

▶ VM nodes

▶ The features are (CPU, Mem, Sto, Price)
▶ No edges between two VM nodes!

Feature scaling:

▶ to [0, 1] is needed in order to prevent one feature from dominating while
preserving min-max relationships, crucial for prediction algorithms

▶ is needed for the hardware specifications/requirements and the VM price.

Edge classification

▶ Initially, all edges between a node of type component and one of type VM
are of type unlinked.

The task is to implement a GNN model in order to predict the type
(linked/unlinked) for all the edges.

Graph Neural Network Formulation

The first step in solving the edge classification problem is to model it as graph
data.
Heterogeneous graph:
▶ component nodes

▶ The features are (ID, CPU, Mem, Sto, FullDepl, UpperB, LowerB, EqualB).
▶ Edges between component nodes are determined by the application-specific

constraints except FullDepl, UpperB, LowerB, EqualB.
▶ Edges are specified using one-hot encoding on the possible application-

specific constraints: (Conflict, Co-location, RequireProvide,
ExclusiveDeployment, UpperB, LowerB, EqualB).

▶ VM nodes

▶ The features are (CPU, Mem, Sto, Price)
▶ No edges between two VM nodes!

Feature scaling:

▶ to [0, 1] is needed in order to prevent one feature from dominating while
preserving min-max relationships, crucial for prediction algorithms

▶ is needed for the hardware specifications/requirements and the VM price.

Edge classification

▶ Initially, all edges between a node of type component and one of type VM
are of type unlinked.

The task is to implement a GNN model in order to predict the type
(linked/unlinked) for all the edges.

Graph Neural Network Formulation

The first step in solving the edge classification problem is to model it as graph
data.
Heterogeneous graph:
▶ component nodes

▶ The features are (ID, CPU, Mem, Sto, FullDepl, UpperB, LowerB, EqualB).

▶ Edges between component nodes are determined by the application-specific
constraints except FullDepl, UpperB, LowerB, EqualB.

▶ Edges are specified using one-hot encoding on the possible application-
specific constraints: (Conflict, Co-location, RequireProvide,
ExclusiveDeployment, UpperB, LowerB, EqualB).

▶ VM nodes

▶ The features are (CPU, Mem, Sto, Price)
▶ No edges between two VM nodes!

Feature scaling:

▶ to [0, 1] is needed in order to prevent one feature from dominating while
preserving min-max relationships, crucial for prediction algorithms

▶ is needed for the hardware specifications/requirements and the VM price.

Edge classification

▶ Initially, all edges between a node of type component and one of type VM
are of type unlinked.

The task is to implement a GNN model in order to predict the type
(linked/unlinked) for all the edges.

Graph Neural Network Formulation

The first step in solving the edge classification problem is to model it as graph
data.
Heterogeneous graph:
▶ component nodes

▶ The features are (ID, CPU, Mem, Sto, FullDepl, UpperB, LowerB, EqualB).
▶ Edges between component nodes are determined by the application-specific

constraints except FullDepl, UpperB, LowerB, EqualB.

▶ Edges are specified using one-hot encoding on the possible application-
specific constraints: (Conflict, Co-location, RequireProvide,
ExclusiveDeployment, UpperB, LowerB, EqualB).

▶ VM nodes

▶ The features are (CPU, Mem, Sto, Price)
▶ No edges between two VM nodes!

Feature scaling:

▶ to [0, 1] is needed in order to prevent one feature from dominating while
preserving min-max relationships, crucial for prediction algorithms

▶ is needed for the hardware specifications/requirements and the VM price.

Edge classification

▶ Initially, all edges between a node of type component and one of type VM
are of type unlinked.

The task is to implement a GNN model in order to predict the type
(linked/unlinked) for all the edges.

Graph Neural Network Formulation

The first step in solving the edge classification problem is to model it as graph
data.
Heterogeneous graph:
▶ component nodes

▶ The features are (ID, CPU, Mem, Sto, FullDepl, UpperB, LowerB, EqualB).
▶ Edges between component nodes are determined by the application-specific

constraints except FullDepl, UpperB, LowerB, EqualB.
▶ Edges are specified using one-hot encoding on the possible application-

specific constraints: (Conflict, Co-location, RequireProvide,
ExclusiveDeployment, UpperB, LowerB, EqualB).

▶ VM nodes

▶ The features are (CPU, Mem, Sto, Price)
▶ No edges between two VM nodes!

Feature scaling:

▶ to [0, 1] is needed in order to prevent one feature from dominating while
preserving min-max relationships, crucial for prediction algorithms

▶ is needed for the hardware specifications/requirements and the VM price.

Edge classification

▶ Initially, all edges between a node of type component and one of type VM
are of type unlinked.

The task is to implement a GNN model in order to predict the type
(linked/unlinked) for all the edges.

Graph Neural Network Formulation

The first step in solving the edge classification problem is to model it as graph
data.
Heterogeneous graph:
▶ component nodes

▶ The features are (ID, CPU, Mem, Sto, FullDepl, UpperB, LowerB, EqualB).
▶ Edges between component nodes are determined by the application-specific

constraints except FullDepl, UpperB, LowerB, EqualB.
▶ Edges are specified using one-hot encoding on the possible application-

specific constraints: (Conflict, Co-location, RequireProvide,
ExclusiveDeployment, UpperB, LowerB, EqualB).

▶ VM nodes
▶ The features are (CPU, Mem, Sto, Price)

▶ No edges between two VM nodes!

Feature scaling:

▶ to [0, 1] is needed in order to prevent one feature from dominating while
preserving min-max relationships, crucial for prediction algorithms

▶ is needed for the hardware specifications/requirements and the VM price.

Edge classification

▶ Initially, all edges between a node of type component and one of type VM
are of type unlinked.

The task is to implement a GNN model in order to predict the type
(linked/unlinked) for all the edges.

Graph Neural Network Formulation

The first step in solving the edge classification problem is to model it as graph
data.
Heterogeneous graph:
▶ component nodes

▶ The features are (ID, CPU, Mem, Sto, FullDepl, UpperB, LowerB, EqualB).
▶ Edges between component nodes are determined by the application-specific

constraints except FullDepl, UpperB, LowerB, EqualB.
▶ Edges are specified using one-hot encoding on the possible application-

specific constraints: (Conflict, Co-location, RequireProvide,
ExclusiveDeployment, UpperB, LowerB, EqualB).

▶ VM nodes
▶ The features are (CPU, Mem, Sto, Price)
▶ No edges between two VM nodes!

Feature scaling:

▶ to [0, 1] is needed in order to prevent one feature from dominating while
preserving min-max relationships, crucial for prediction algorithms

▶ is needed for the hardware specifications/requirements and the VM price.

Edge classification

▶ Initially, all edges between a node of type component and one of type VM
are of type unlinked.

The task is to implement a GNN model in order to predict the type
(linked/unlinked) for all the edges.

Graph Neural Network Formulation

The first step in solving the edge classification problem is to model it as graph
data.
Heterogeneous graph:
▶ component nodes

▶ The features are (ID, CPU, Mem, Sto, FullDepl, UpperB, LowerB, EqualB).
▶ Edges between component nodes are determined by the application-specific

constraints except FullDepl, UpperB, LowerB, EqualB.
▶ Edges are specified using one-hot encoding on the possible application-

specific constraints: (Conflict, Co-location, RequireProvide,
ExclusiveDeployment, UpperB, LowerB, EqualB).

▶ VM nodes
▶ The features are (CPU, Mem, Sto, Price)
▶ No edges between two VM nodes!

Feature scaling:

▶ to [0, 1] is needed in order to prevent one feature from dominating while
preserving min-max relationships, crucial for prediction algorithms

▶ is needed for the hardware specifications/requirements and the VM price.

Edge classification

▶ Initially, all edges between a node of type component and one of type VM
are of type unlinked.

The task is to implement a GNN model in order to predict the type
(linked/unlinked) for all the edges.

Graph Neural Network Formulation

The first step in solving the edge classification problem is to model it as graph
data.
Heterogeneous graph:
▶ component nodes

▶ The features are (ID, CPU, Mem, Sto, FullDepl, UpperB, LowerB, EqualB).
▶ Edges between component nodes are determined by the application-specific

constraints except FullDepl, UpperB, LowerB, EqualB.
▶ Edges are specified using one-hot encoding on the possible application-

specific constraints: (Conflict, Co-location, RequireProvide,
ExclusiveDeployment, UpperB, LowerB, EqualB).

▶ VM nodes
▶ The features are (CPU, Mem, Sto, Price)
▶ No edges between two VM nodes!

Feature scaling:
▶ to [0, 1] is needed in order to prevent one feature from dominating while

preserving min-max relationships, crucial for prediction algorithms
▶ is needed for the hardware specifications/requirements and the VM price.

Edge classification

▶ Initially, all edges between a node of type component and one of type VM
are of type unlinked.

The task is to implement a GNN model in order to predict the type
(linked/unlinked) for all the edges.

Graph Neural Network Formulation

The first step in solving the edge classification problem is to model it as graph
data.
Heterogeneous graph:
▶ component nodes

▶ The features are (ID, CPU, Mem, Sto, FullDepl, UpperB, LowerB, EqualB).
▶ Edges between component nodes are determined by the application-specific

constraints except FullDepl, UpperB, LowerB, EqualB.
▶ Edges are specified using one-hot encoding on the possible application-

specific constraints: (Conflict, Co-location, RequireProvide,
ExclusiveDeployment, UpperB, LowerB, EqualB).

▶ VM nodes
▶ The features are (CPU, Mem, Sto, Price)
▶ No edges between two VM nodes!

Feature scaling:
▶ to [0, 1] is needed in order to prevent one feature from dominating while

preserving min-max relationships, crucial for prediction algorithms
▶ is needed for the hardware specifications/requirements and the VM price.

Edge classification

▶ Initially, all edges between a node of type component and one of type VM
are of type unlinked.

The task is to implement a GNN model in order to predict the type
(linked/unlinked) for all the edges.

Graph Neural Network Formulation

The first step in solving the edge classification problem is to model it as graph
data.
Heterogeneous graph:
▶ component nodes

▶ The features are (ID, CPU, Mem, Sto, FullDepl, UpperB, LowerB, EqualB).
▶ Edges between component nodes are determined by the application-specific

constraints except FullDepl, UpperB, LowerB, EqualB.
▶ Edges are specified using one-hot encoding on the possible application-

specific constraints: (Conflict, Co-location, RequireProvide,
ExclusiveDeployment, UpperB, LowerB, EqualB).

▶ VM nodes
▶ The features are (CPU, Mem, Sto, Price)
▶ No edges between two VM nodes!

Feature scaling:
▶ to [0, 1] is needed in order to prevent one feature from dominating while

preserving min-max relationships, crucial for prediction algorithms
▶ is needed for the hardware specifications/requirements and the VM price.

Edge classification
▶ Initially, all edges between a node of type component and one of type VM

are of type unlinked.

The task is to implement a GNN model in order to predict the type
(linked/unlinked) for all the edges.

Graph Neural Network Formulation

The first step in solving the edge classification problem is to model it as graph
data.
Heterogeneous graph:
▶ component nodes

▶ The features are (ID, CPU, Mem, Sto, FullDepl, UpperB, LowerB, EqualB).
▶ Edges between component nodes are determined by the application-specific

constraints except FullDepl, UpperB, LowerB, EqualB.
▶ Edges are specified using one-hot encoding on the possible application-

specific constraints: (Conflict, Co-location, RequireProvide,
ExclusiveDeployment, UpperB, LowerB, EqualB).

▶ VM nodes
▶ The features are (CPU, Mem, Sto, Price)
▶ No edges between two VM nodes!

Feature scaling:
▶ to [0, 1] is needed in order to prevent one feature from dominating while

preserving min-max relationships, crucial for prediction algorithms
▶ is needed for the hardware specifications/requirements and the VM price.

Edge classification
▶ Initially, all edges between a node of type component and one of type VM

are of type unlinked.

The task is to implement a GNN model in order to predict the type
(linked/unlinked) for all the edges.

Contents

Motivation

Part 1: Optimization Modulo Theory - background and examples

Part 2: Optimization Modulo Theory - Case Study
Problem Specification
Problem Formalization

Model-driven approach: Formulation of the Satisfiability/Optimization Modulo Theory
Problem
Data-driven approach: Graph Neural Network Formulation

Solution
Dataset generation
Training a GNN model for edge classification
Integrated GNN and Exact Techniques: Experimental Results

Future Work

Solution

1. Generate the dataset which is used to train a GNN model of the
application to be deployed. This dataset, representing optimal deployment
plans, is obtained by multiple runs of the exact solver previously developed
by us.

2. Train a GNN model which predicts the assignments of components to
VMs as well as the VM Offers.

3. Transform the predictions into soft constraints to guide the search
exploration of the Base solver towards an optimal solution.

Solution

1. Generate the dataset which is used to train a GNN model of the
application to be deployed. This dataset, representing optimal deployment
plans, is obtained by multiple runs of the exact solver previously developed
by us.

2. Train a GNN model which predicts the assignments of components to
VMs as well as the VM Offers.

3. Transform the predictions into soft constraints to guide the search
exploration of the Base solver towards an optimal solution.

Solution

1. Generate the dataset which is used to train a GNN model of the
application to be deployed. This dataset, representing optimal deployment
plans, is obtained by multiple runs of the exact solver previously developed
by us.

2. Train a GNN model which predicts the assignments of components to
VMs as well as the VM Offers.

3. Transform the predictions into soft constraints to guide the search
exploration of the Base solver towards an optimal solution.

Dataset generation

Large dataset to train the model
(
20
15

)
≈ 15000 different VM Offers inputs.

Training a GNN model for edge classification

Supervised GNN learning approach:

1. Data Preparation: graph representation and nodes and edges feature
extraction.

2. Graph Construction: application graph’s structure (nodes, edges, and their
relationships)

Training a GNN model for edge classification

Supervised GNN learning approach:

1. Data Preparation: graph representation and nodes and edges feature
extraction.

2. Graph Construction: application graph’s structure (nodes, edges, and their
relationships)

Training a GNN model for edge classification

Supervised GNN learning approach:

3. Choosing Model Architecture which allows heterogeneity modeling and
edge classification.

Training a GNN model for edge classification

Supervised GNN learning approach:

4. The loss function is focal loss suitable for imbalanced sets.

5. Adam optimizer with the default parameters provided by DGL library.

6. Model Training, Validation and Testing

▶ train, test, validation: 60%, 20%, 20%
▶ batch size = 50
▶ training dataset size: min = 50, max = 10000
▶ #epochs: min = 30, max = 600

#
Sample
Size

#Ep Acc Time
Pred. T
Links

Pred. F
Links

GT True
Links

3 50 200 0.95 21.36 7 10
7 100 100 0.95 21.92 7 13 8
11 100 400 0.95 87.92 8 13

Training a GNN model for edge classification

Supervised GNN learning approach:

4. The loss function is focal loss suitable for imbalanced sets.

5. Adam optimizer with the default parameters provided by DGL library.

6. Model Training, Validation and Testing

▶ train, test, validation: 60%, 20%, 20%
▶ batch size = 50
▶ training dataset size: min = 50, max = 10000
▶ #epochs: min = 30, max = 600

#
Sample
Size

#Ep Acc Time
Pred. T
Links

Pred. F
Links

GT True
Links

3 50 200 0.95 21.36 7 10
7 100 100 0.95 21.92 7 13 8
11 100 400 0.95 87.92 8 13

Training a GNN model for edge classification

Supervised GNN learning approach:

4. The loss function is focal loss suitable for imbalanced sets.

5. Adam optimizer with the default parameters provided by DGL library.

6. Model Training, Validation and Testing

▶ train, test, validation: 60%, 20%, 20%
▶ batch size = 50
▶ training dataset size: min = 50, max = 10000
▶ #epochs: min = 30, max = 600

#
Sample
Size

#Ep Acc Time
Pred. T
Links

Pred. F
Links

GT True
Links

3 50 200 0.95 21.36 7 10
7 100 100 0.95 21.92 7 13 8
11 100 400 0.95 87.92 8 13

Training a GNN model for edge classification

Supervised GNN learning approach:

4. The loss function is focal loss suitable for imbalanced sets.

5. Adam optimizer with the default parameters provided by DGL library.

6. Model Training, Validation and Testing
▶ train, test, validation: 60%, 20%, 20%

▶ batch size = 50
▶ training dataset size: min = 50, max = 10000
▶ #epochs: min = 30, max = 600

#
Sample
Size

#Ep Acc Time
Pred. T
Links

Pred. F
Links

GT True
Links

3 50 200 0.95 21.36 7 10
7 100 100 0.95 21.92 7 13 8
11 100 400 0.95 87.92 8 13

Training a GNN model for edge classification

Supervised GNN learning approach:

4. The loss function is focal loss suitable for imbalanced sets.

5. Adam optimizer with the default parameters provided by DGL library.

6. Model Training, Validation and Testing
▶ train, test, validation: 60%, 20%, 20%
▶ batch size = 50

▶ training dataset size: min = 50, max = 10000
▶ #epochs: min = 30, max = 600

#
Sample
Size

#Ep Acc Time
Pred. T
Links

Pred. F
Links

GT True
Links

3 50 200 0.95 21.36 7 10
7 100 100 0.95 21.92 7 13 8
11 100 400 0.95 87.92 8 13

Training a GNN model for edge classification

Supervised GNN learning approach:

4. The loss function is focal loss suitable for imbalanced sets.

5. Adam optimizer with the default parameters provided by DGL library.

6. Model Training, Validation and Testing
▶ train, test, validation: 60%, 20%, 20%
▶ batch size = 50
▶ training dataset size: min = 50, max = 10000

▶ #epochs: min = 30, max = 600

#
Sample
Size

#Ep Acc Time
Pred. T
Links

Pred. F
Links

GT True
Links

3 50 200 0.95 21.36 7 10
7 100 100 0.95 21.92 7 13 8
11 100 400 0.95 87.92 8 13

Training a GNN model for edge classification

Supervised GNN learning approach:

4. The loss function is focal loss suitable for imbalanced sets.

5. Adam optimizer with the default parameters provided by DGL library.

6. Model Training, Validation and Testing
▶ train, test, validation: 60%, 20%, 20%
▶ batch size = 50
▶ training dataset size: min = 50, max = 10000
▶ #epochs: min = 30, max = 600

#
Sample
Size

#Ep Acc Time
Pred. T
Links

Pred. F
Links

GT True
Links

3 50 200 0.95 21.36 7 10
7 100 100 0.95 21.92 7 13 8
11 100 400 0.95 87.92 8 13

Training a GNN model for edge classification

Supervised GNN learning approach:

4. The loss function is focal loss suitable for imbalanced sets.

5. Adam optimizer with the default parameters provided by DGL library.

6. Model Training, Validation and Testing
▶ train, test, validation: 60%, 20%, 20%
▶ batch size = 50
▶ training dataset size: min = 50, max = 10000
▶ #epochs: min = 30, max = 600

#
Sample
Size

#Ep Acc Time
Pred. T
Links

Pred. F
Links

GT True
Links

3 50 200 0.95 21.36 7 10
7 100 100 0.95 21.92 7 13 8
11 100 400 0.95 87.92 8 13

Integrated GNN and Exact Techniques: Experimental Results

▶ the scalability of the GNN approach for increasing number of VM offers,
possibly previously unseen (see table), and

▶ the generalization of the GNN approach for applications characterized by
similar constraints between components but with different hardware
requirements (see the paper [9]).

Integrated GNN and Exact Techniques: Experimental Results

▶ the scalability of the GNN approach for increasing number of VM offers,
possibly previously unseen (see table), and

▶ the generalization of the GNN approach for applications characterized by
similar constraints between components but with different hardware
requirements (see the paper [9]).

Experimental Analysis (cont’d)

Explanation of the FV symmetry breaker

IDSServer (C4)Balancer (C1)

Nginx (C3)Apache (C2) IDSAgent (C5)

Figure: Secure Web Container conflict graph. The components with green background
belong to the clique G .

VM1 VM2 VM3 VM4 VM5 VM6

C1 1 0 0 0 0 0

C2 0 0 1 0 1 0

C3 0 0 0 1 0 0

C4 0 1 0 0 0 0

C5 0 0 1 1 1 0

Table: Effect of FV symmetry breaking strategy

Integrated GNN and Exact Techniques: Experimental Results

▶ the scalability of the GNN approach for increasing number of VM offers,
possibly previously unseen (see table). Base = Z3

#o Solver Model#3 Model#7 Model#11 Opt. Price

20 Base 0.24 3.759
Base+FVPR 0.11
Base+GNN 0.12 0.12 0.07
Base+FVPR+GNN 0.12 0.09 0.10

40 Base 0.54 2.676
Base+FVPR 0.27
Base+GNN 0.28 0.33 0.28
Base+FVPR+GNN 0.29 0.28 0.29

250 Base 2.82 1.622
Base+FVPR 0.98
Base+GNN 0.76 0.77 1
Base+FVPR+GNN 1.40 1.39 1.15

500 Base 8.71 1.582
Base+FVPR 2.42
Base+GNN 4.56 2.92 1.5
Base+FVPR+GNN 3.09 3 3.01

27 Base 0.26 2.400
Base+FVPR 0.09
Base+GNN 0.10 0.14 0.14
Base+FVPR+GNN 0.10 0.10 0.07

Experimental Analysis (cont’d)

Using the GNN Prediction as Soft Constraints
Formalization of the assignment predictions as a binary 3D tensor pred with
prediko ∈ {0, 1} for i = 1,N, k = 1,M and o = 1,O:

prediko =

{
1 if Ci is assigned to Vj of type Oo

0 if Ci is not assigned to Vj of type Oo

From tensors to soft constraints

∃o∈1,O s.t. prediko =1 =⇒ aik =1∧
H∧

h=1

(
rhk=F

h
o

)
∧pk=Po

∄o∈1,O s.t. prediko =1 =⇒ aik =0

Diagram describing the integration of the GNN model with the Base solver

Experimental Analysis (cont’d)

Using the GNN Prediction as Soft Constraints The pred tensor for the first
component of the Secure Web Container application, generated from running
the GNN model prediction on the case study application with 10 VM offers,
looks like: 

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


where M = 6 rows and O = 10 columns.
The corresponding soft constraints are:

▶ for assignment matrix a:
(assert-soft (= a11 0))
(assert-soft (= a12 1))

(assert-soft (= a13 1))
(assert-soft (= a14 1))

(assert-soft (= a15 0))
(assert-soft (= a16 0))

▶ for type vector t:
(assert-soft (and (= PriceProv2 8.403)...))
(assert-soft (and (= PriceProv3 8.403)...))
(assert-soft (and (= PriceProv4 0.093)...))

where the predictions obtained for the VM offers type were t2 = 7,
t3 = 7, t4 = 5. For example, the VM Offer 5 has the specification
(1, 3750, 1000, 0.093).

Experimental Analysis (cont’d)

Implementation of soft constraints in Z3 optimization
Optimization in Z3:

1. If the soft constraints are added before the optimization function, then the
solver tries to satisfy as many as possible and will use the intermediate
results for the optimization function (multi-criterial optimization with
lexicographic option by default). ⇝ hence the soft constraints might
destry the actual optimim

2. If the soft constraints are declared after the optimization function, the
optimal value will be found without the soft constraints ⇝ this does not
exploit the benefits of soft constraints in guiding the solver to find faster
the solution.

We simulated soft constraints with pseudo-boolean and cardinality constraints.

Pseudo-Boolean constraint
A linear pseudo-Boolean constraint has the form:

∑
j

ai lj ▷ b where ai and b are

integer constants, lj are literals and ▷ is a relational operator.

Cardinality Constraint

A cardinality constraint is a constraint on the number of literals which are true
among a given set of literals.

In our case: atmost(k, {x1, x2, ..., xn}) is true if and only if at most k literals
among x1, x2, ..., xn are true.

Experimental Analysis (cont’d)

Implementation of soft constraints in Z3 optimization
Optimization in Z3:

1. If the soft constraints are added before the optimization function, then the
solver tries to satisfy as many as possible and will use the intermediate
results for the optimization function (multi-criterial optimization with
lexicographic option by default). ⇝ hence the soft constraints might
destry the actual optimim

2. If the soft constraints are declared after the optimization function, the
optimal value will be found without the soft constraints ⇝ this does not
exploit the benefits of soft constraints in guiding the solver to find faster
the solution.

We simulated soft constraints with pseudo-boolean and cardinality constraints.

Pseudo-Boolean constraint
A linear pseudo-Boolean constraint has the form:

∑
j

ai lj ▷ b where ai and b are

integer constants, lj are literals and ▷ is a relational operator.

Cardinality Constraint

A cardinality constraint is a constraint on the number of literals which are true
among a given set of literals.

In our case: atmost(k, {x1, x2, ..., xn}) is true if and only if at most k literals
among x1, x2, ..., xn are true.

Experimental Analysis (cont’d)

Implementation of soft constraints in Z3 optimization
Optimization in Z3:

1. If the soft constraints are added before the optimization function, then the
solver tries to satisfy as many as possible and will use the intermediate
results for the optimization function (multi-criterial optimization with
lexicographic option by default). ⇝ hence the soft constraints might
destry the actual optimim

2. If the soft constraints are declared after the optimization function, the
optimal value will be found without the soft constraints ⇝ this does not
exploit the benefits of soft constraints in guiding the solver to find faster
the solution.

We simulated soft constraints with pseudo-boolean and cardinality constraints.

Pseudo-Boolean constraint
A linear pseudo-Boolean constraint has the form:

∑
j

ai lj ▷ b where ai and b are

integer constants, lj are literals and ▷ is a relational operator.

Cardinality Constraint

A cardinality constraint is a constraint on the number of literals which are true
among a given set of literals.

In our case: atmost(k, {x1, x2, ..., xn}) is true if and only if at most k literals
among x1, x2, ..., xn are true.

Experimental Analysis (cont’d)

Implementation of soft constraints in Z3 optimization
Optimization in Z3:

1. If the soft constraints are added before the optimization function, then the
solver tries to satisfy as many as possible and will use the intermediate
results for the optimization function (multi-criterial optimization with
lexicographic option by default). ⇝ hence the soft constraints might
destry the actual optimim

2. If the soft constraints are declared after the optimization function, the
optimal value will be found without the soft constraints ⇝ this does not
exploit the benefits of soft constraints in guiding the solver to find faster
the solution.

We simulated soft constraints with pseudo-boolean and cardinality constraints.

Pseudo-Boolean constraint
A linear pseudo-Boolean constraint has the form:

∑
j

ai lj ▷ b where ai and b are

integer constants, lj are literals and ▷ is a relational operator.

Cardinality Constraint

A cardinality constraint is a constraint on the number of literals which are true
among a given set of literals.

In our case: atmost(k, {x1, x2, ..., xn}) is true if and only if at most k literals
among x1, x2, ..., xn are true.

Experimental Analysis (cont’d)

Implementation of soft constraints in Z3 optimization
Optimization in Z3:

1. If the soft constraints are added before the optimization function, then the
solver tries to satisfy as many as possible and will use the intermediate
results for the optimization function (multi-criterial optimization with
lexicographic option by default). ⇝ hence the soft constraints might
destry the actual optimim

2. If the soft constraints are declared after the optimization function, the
optimal value will be found without the soft constraints ⇝ this does not
exploit the benefits of soft constraints in guiding the solver to find faster
the solution.

We simulated soft constraints with pseudo-boolean and cardinality constraints.

Pseudo-Boolean constraint
A linear pseudo-Boolean constraint has the form:

∑
j

ai lj ▷ b where ai and b are

integer constants, lj are literals and ▷ is a relational operator.

Cardinality Constraint

A cardinality constraint is a constraint on the number of literals which are true
among a given set of literals.

In our case: atmost(k, {x1, x2, ..., xn}) is true if and only if at most k literals
among x1, x2, ..., xn are true.

Experimental Analysis (cont’d)

Implementation of soft constraints in Z3 optimization
Optimization in Z3:

1. If the soft constraints are added before the optimization function, then the
solver tries to satisfy as many as possible and will use the intermediate
results for the optimization function (multi-criterial optimization with
lexicographic option by default). ⇝ hence the soft constraints might
destry the actual optimim

2. If the soft constraints are declared after the optimization function, the
optimal value will be found without the soft constraints ⇝ this does not
exploit the benefits of soft constraints in guiding the solver to find faster
the solution.

We simulated soft constraints with pseudo-boolean and cardinality constraints.

Pseudo-Boolean constraint
A linear pseudo-Boolean constraint has the form:

∑
j

ai lj ▷ b where ai and b are

integer constants, lj are literals and ▷ is a relational operator.

Cardinality Constraint

A cardinality constraint is a constraint on the number of literals which are true
among a given set of literals.

In our case: atmost(k, {x1, x2, ..., xn}) is true if and only if at most k literals
among x1, x2, ..., xn are true.

Contents

Motivation

Part 1: Optimization Modulo Theory - background and examples

Part 2: Optimization Modulo Theory - Case Study
Problem Specification
Problem Formalization

Model-driven approach: Formulation of the Satisfiability/Optimization Modulo Theory
Problem
Data-driven approach: Graph Neural Network Formulation

Solution
Dataset generation
Training a GNN model for edge classification
Integrated GNN and Exact Techniques: Experimental Results

Future Work

Future Work

▶ Investigate better the timings of Base+GNN and Base+FV+GNN on this
use case and others.

▶ Investigate the characteristics of the datasets.

▶ Improve the GNN model.

▶ New case studies, from different application domains.

Future Work

▶ Investigate better the timings of Base+GNN and Base+FV+GNN on this
use case and others.

▶ Investigate the characteristics of the datasets.

▶ Improve the GNN model.

▶ New case studies, from different application domains.

References I

IBM ILOG CPLEX Optimization Studio.
Version, 12(1987-2018):1, 1987.

R. F. Araujo, H. F. Albuquerque, I. V. De Bessa, L. C. Cordeiro, and J. E.
Chaves Filho.
Counterexample guided inductive optimization based on satisfiability
modulo theories.
Science of Computer Programming, 165:3–23, 2018.

H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli, et al.
CVC5: A versatile and industrial-strength SMT solver.
In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 415–442. Springer, 2022.

N. Bjørner, A. Phan, and L. Fleckenstein.
νZ - an optimizing SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems -
21st International Conference, TACAS 2015, London, UK, April 11-18,
2015. Proceedings, pages 194–199, 2015.

References II

R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich.
The OpenSMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems:
16th International Conference, TACAS 2010, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2010,
Paphos, Cyprus, March 20-28, 2010. Proceedings 16, pages 150–153.
Springer, 2010.

G. Chu, P. Stuckey, A. Schutt, T. Ehlers, G. Gange, and K. Francis.
Chuffed, a lazy clause generation solver.

L. de Moura and N. Bjørner.
Z3: An efficient SMT solver.
In C. R. Ramakrishnan and J. Rehof, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 337–340, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

B. Dutertre.
Yices 2 manual.
Computer Science Laboratory, SRI International, Tech. Rep, 2014.

References III

M. Eraşcu.
Fast and exact synthesis of application deployment plans using graph
neural networks and satisfiability modulo theory.
In 2024 International Joint Conference on Neural Networks (IJCNN),
pages 1–10, 2024.

K. Fazekas, F. Bacchus, and A. Biere.
Implicit hitting set algorithms for maximum satisfiability modulo theories.
In Automated Reasoning: 9th International Joint Conference, IJCAR 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 14-17, 2018, Proceedings 9, pages 134–151. Springer, 2018.

G. Kovásznai, C. Biró, and B. Erdélyi.
Puli – a problem-specific OMT solver.
In Proc. 16th International Workshop on Satisfiability Modulo Theories
(SMT 2018), volume 371, 2018.

D. Larraz, A. Oliveras, E. Rodŕıguez-Carbonell, and A. Rubio.
Minimal-model-guided approaches to solving polynomial constraints and
extensions.
In International Conference on Theory and Applications of Satisfiability
Testing, pages 333–350. Springer, 2014.

References IV

Y. Li, A. Albarghouthi, Z. Kincaid, A. Gurfinkel, and M. Chechik.
Symbolic optimization with SMT solvers.
In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21,
2014, pages 607–618, 2014.

A. Nadel and V. Ryvchin.
Bit-vector optimization.
In Tools and Algorithms for the Construction and Analysis of Systems:
22nd International Conference, TACAS 2016, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings 22, pages
851–867. Springer, 2016.

N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and
G. Tack.
MiniZinc: Towards a standard CP modelling language.
In International Conference on Principles and Practice of Constraint
Programming, pages 529–543. Springer, 2007.

L. Perron and V. Furnon.
OR-Tools.

References V

C. Schulte, M. Lagerkvist, and G. Tack.
Gecode.
Software download and online material at the website:
http://www.gecode.org, pages 11–13, 2006.

R. Sebastiani and P. Trentin.
OptiMathSAT: A tool for optimization modulo theories.
In D. Kroening and C. S. Păsăreanu, editors, Computer Aided Verification,
pages 447–454, Cham, 2015. Springer International Publishing.

P. Trentin.
Optimization Modulo Theories with OptiMathSAT.
Phd thesis, University of Trento, May 2019.

	Motivation
	Part 1: Optimization Modulo Theory - background and examples
	Part 2: Optimization Modulo Theory - Case Study
	Problem Specification
	Problem Formalization
	Solution
	Future Work

