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Motivation

Constrained optimization problems have applications in engineering, economics,
computer science, just to name a few.

General form:

min f1(x), f2(x), ..., fp(x) ∀p ≥ 1
subject to gi (x) = ci ∀i = 1, n

hj(x) ≥ dj ∀j = 1,m

Solution approaches:

1. Exact methods

▶ Constrained Programming (CP)
▶ Modelling languages can be used, e.g. MiniZinc [15]
▶ Google OR-Tools [16], Gecode [17], Chuffed [6]

▶ Mathematical Programming (MP)
▶ CPLEX [1]

▶ Satisfiability Modulo Theory (SMT)
▶ Z3 [7], cvc5 [3], Yices2 [8], OpenSMT [5].

▶ Advantage: provides an optimal solution
▶ Drawback: significant computational time for large problems

2. Approximate methods

▶ heuristics and metaheuristics
▶ Advantage: faster
▶ Drawback: provides a (sub)optimal solution
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Satisfiability Modulo Theory (SMT)

▶ Satisfiability is the problem of determining if a formula has a model.

▶ In the propositional case, a model is a truth assignment to the Boolean
variables.

▶ In the first-order (FO) case, a model assigns values from a domain to
variables and interpretations over the domain to the function and predicate
symbols.

▶ Automated reasoning failure: proof-search procedures for full FO logic ⇝
is FO logic the best compromise between expressivity and efficiency?

▶ Gain efficiency by:

▶ addressing only (expressive enough) decidable fragments of a certain logic.

▶ incorporate domain-specific reasoning, e.g: arithmetic, equality, data
structures (arrays, lists, stacks, ...) and valid combinations
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Satisfiability (SMT) and Optimization Modulo Theory (OMT) (cont’d)

▶ SAT: uses propositional logic as the formalization language

▶ +: high degree of efficiency

▶ −: expressive but complex encodings

▶ SMT: propositional logic + domain-specific reasoning

▶ + better expressivity

▶ − certain (but acceptable) loss of efficiency

▶ SAT competition: https://satcompetition.github.io/

▶ SMT competition: https://smt-comp.github.io/

▶ Some SMT solvers offer optimization features ⇝ optimization modulo
theory (OMT): Z3 [4], OptiMathSAT [18]; Symba [13], HAZEL [14],
MAXHS-MSAT [10], PULI [11], CEGIO [2], BCLT [12].
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SMT Theories

Quantifier-free equality logic with uninterpreted functions
( a = c ∧ b = d ) → f (a, b) = f (c, d)
Quantifier-free bit-vector arithmetic

a+ b ≥ 0 ∧ ( a|b ) ≤ ( a&b )
Quantifier-free array theory

i = j → read(write(a, i , v), j) = v
Quantifier-free integer/rational difference logic

x − y ≥ 0 ∨ x − z < 0
(Quantifier-free) real/integer linear arithmetic

4x + 7y = 8 ∧ (y = 0 ∨ x > y)
(Quantifier-free) real/integer non-linear arithmetic

x2 + 2xy + y 2 > 0 ∨ (x ≥ 1 ∧ xz + yz2 = 0)
Combined theories

2f (x) + 5y > 0 ∧ ¬(f (x) = y ∨ x + 2y = 0)

Source: http://smtlib.cs.uiowa.edu/logics.shtml
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How an extension to SMT solving looks like?

There are basically two different approaches:

▶ Eager SMT solving transforms logical formulas over some theories into
satisfiability-equivalent propositional logic formulas and applies SAT
solving. (“Eager” means theory first)

▶ Lazy SMT solving uses a SAT solver to find solutions for the Boolean
skeleton of the formula, and a theory solver to check satisfiability in the
underlying theory. (“Lazy” means theory later)



Lazy SMT solving

SAT-solver

φ

(In)equation set Explanation

Theory solver

UNSAT

SAT

Boolean abstraction

satisfiable

unsatisfiable

unsatisfiable

satisfiable



Running Example

Assume that we have three virtual machines (VMs) which require 100, 50 and
15 GB hard disk respectively. There are three servers with capabilities 100, 75
and 200 GB in that order. Find out a way to place VMs into servers in order
to:

▶ Minimize the number of servers used.

▶ Minimize the operation cost (the servers have fixed daily costs 10, 5 and
20 USD respectively.)

Formalization. Let xij denote that VM i is placed on the server j and yj denote
that server j is in use.
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Running Example (cont’d)

Assume that we have three virtual machines (VMs) which require 100, 50 and
15 GB hard disk respectively. There are three servers with capabilities 100, 75
and 200 GB in that order. Find out a way to place VMs into servers in order
to:

▶ Minimize the number of servers used.

▶ Minimize the operation cost (the servers have fixed daily costs 10, 5 and
20 USD respectively.)

Solution. Choosing the suitable underlying theory is determined by the
principles of the formalization: xij , yj ∈ {0, 1}
▶ linear constraints with integer variables with 0,1 restriction

▶ linear constraints with real variables with 0,1 restriction

▶ linear constraints boolean variables
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▶ Variables have only 0,1 value:

xij = 0 ∨ xij = 1, ∀i , j = 1, 3

▶ A VM is on exactly one server:

xi1 + xi2 + xi3 = 1, ∀i = 1, 3

▶ A used server has at least a VM on it:

(yj ≥ x1j ) ∧ (yj ≥ x2j ) ∧ (yj ≥ x3j ), j = 1, 3
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▶ 10y1 + 5y2 + 20y3
▶ y1 + y2 + y3
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Solution approaches.

1. Formalization in SMT-LIB2 format: useful for toy examples, some SMT
tools are available online to try their capabilities.

▶ variant-int.smt2
▶ variant-bool.smt2

2. Formalization by programming Z3, in particular Python API.

Is the order of the optimization functions important?
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Types of optimization (in Z3)

Single-criteria optimization:
OMT (LIRA∪T ),OMT (BV∪T ),OMT (PB∪T ) and MAXSMT solving [19].

Multi-criteria optimization
To the best of our knowledge, in the SMT solver Z3, there are three ways to
combine objective functions.

1. lexicographic combinations (by default) variant-int.smt2

Algorithm 1 Sequential algorithm for general objectives

1: for t = 1 to n do
2: Solve the single-objective problem:

max ft(x)

subject to x ∈ X ,

fk(x) ≥ zk for all k ∈ 1, . . . , t − 1.

3: if the problem is infeasible or unbounded then
4: print ”no solution”
5: else
6: Add as additional constraints the values of the decision variables x and fk(x)=

zt
7: end if
8: end for
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Types of optimization (in Z3) (cont’d)

2. Boxes are used to specify independent optima subject to given constraints:
variant-int-box.smt2

3. Pareto optimization involves more than one objective function to be
optimized simultaneously. variant-int-pareto.smt2



Types of optimization (in Z3) (cont’d)

2. Boxes are used to specify independent optima subject to given constraints:
variant-int-box.smt2

3. Pareto optimization involves more than one objective function to be
optimized simultaneously. variant-int-pareto.smt2



Programming Z3 (Python API)

▶ variant-int.py

▶ variant-bool.py
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▶ variant-int.py

▶ variant-bool.py
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Motivation

▶ The data-driven approach focuses on using data to drive the development
and improvement of AI systems.

⇝ graph neural networks

▶ The model-based approach focuses on developing a mathematical model
of the system or process being studied.

⇝ satisfiability/optimization
modulo theory
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Motivation (cont’d)

Advent of Cloud computing ⇝ loosely-coupled architecture ⇝ DevOps
paradigm ⇝ application modeling ⇝ optimal deployment

Benefits of optimal deployment:

1. the synthesis of deployment plans that are optimal by design

2. the integration of such deployment plans into the application modeling
process enables formal reasoning on a model of the deployed application.

Automated deployment of component-based applications in the Cloud
consists of:

1. selection of the computing resources,

2. distribution/assignment of the application components over the available
computing resources,

3. its dynamic modification to cope with peaks of user requests.
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Motivating Example

Problem: finding the best offer for a Secure Web Container

Components

▶ two Web Containers (e.g. Apache
Tomcat or Nginx)

▶ a Balancer

▶ an IDSServer (Intrusion Detection
System)

▶ an IDS Agent

Constraints
▶ Conflicts: Apache and Nginx cannot be deployed on the same VM.
▶ Conflicts: Balancer needs exclusive use of machines.
▶ Equal bound: exactly one Balancer has to be instantiated.
▶ Lower bound: at least 3 instances of Apache and/or Nginx are required.
▶ Require-provides: one IDSServer for 10 IDS Agents.
▶ Full deployment: one instance of the IDS Agent on all VMs except for

those containing the IDSServer and the Balancer.
▶ Hardware constraints: components hardware requirements.

Goal: find a set of virtual machines (VMs) which satisfies the components
requirements and lead to the minimum cost.
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Motivating Example (cont’d)

Remark: [snapshot from https://aws.amazon.com/ec2/] tens of thousands of
price offers corresponding to different configurations and zones



Motivating Example (cont’d)

Example solution

▶ VM1 (CPU:8, RAM: 15 GB, Storage: 2000 GB, Price: 0.0526 $/hour):
Nginx + IDS Agent

▶ VM2 (CPU:4, RAM: 7.5 GB, Storage: 2000 GB, Price: 0.0283 $/hour):
Balancer

▶ VM3 (CPU:4, RAM: 30 GB, Storage: 2000 GB, Price: 0.0644 $/hour):
IDSServer

▶ VM4 (CPU:4, RAM: 7.5 GB, Storage: 2000 GB, Price: 0.0283 $/hour):
Apache + IDS Agent

▶ VM5 (CPU:4, RAM: 7.5 GB, Storage: 2000 GB, Price: 0.0283 $/hour):
Apache + IDS Agent
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Problem Specification

Automated deployment of component-based applications in the Cloud
consists of:

1. selection of the computing resources,

2. distribution/assignment of the application components over the available
computing resources,

3. dynamic modification to cope with peaks of user requests.
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Figure: SAGE General Architecture
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Problem: finding the best offer for a Secure Web Container

Components

▶ two Web Containers (e.g. Apache
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Model-driven approach: Formulation of the Satisfiability/Optimization
Modulo Theory Problem

General constraints

Basic allocation
M∑
k=1

aik ≥ 1 ∀i = 1,N

Occupancy
N∑
i=1

aik ≥ 1 ⇒ vk = 1 ∀k = 1,M

Capacity
N∑
i=1

aik · Rh
i ≤ F h

tk ∀k = 1,M, ∀h = 1,H

Link vk=1 ∧ tk=o ⇒
H∧

h=1

(
rhk=F

h
tk

)
∧ pk=Ptk ∀o = 1,O, O ∈ N∗∑N

i=1 aik = 0 ⇒ tk = 0 ∀k = 1,M

where:

▶ Rh
i ∈ N∗ is the hardware requirement of type h of the component i ;

▶ F h
tk ∈ N∗ is the hardware characteristic h of the VM of type tk .



Problem Formalization (cont’d)

Application-specific constraints

Conflicts aik + ajk ≤ 1 ∀k = 1,M, ∀(i , j) Rij = 1

Co-location aik = ajk ∀k = 1,M, ∀(i , j) Dij = 1
Exclusive deployment

H
(

M∑
k=1

ai1k

)
+ ...+H

(
M∑
k=1

aiqk

)
= 1 for fixed q ∈ {1, ...,N}

H(u) =

{
1 u > 0

0 u = 0

Require- Provide

nij
M∑
k=1

aik ≤ mij

M∑
k=1

ajk ∀(i , j)Qij(nij ,mij) = 1

0 ≤ n
M∑
k=1

ajk −
M∑
k=1

aik < n n, nij ,mij ∈ N∗

where:
▶ Rij = 1 if components i and j are in conflict (can not be placed in the

same VM);
▶ Dij = 1 if components i and j must be co-located (must be placed in the

same VM);
▶ Qij(n,m)=1 if Ci requires at least n instances of Cj and Cj can serve at

most m instances of Ci



Problem Formalization (cont’d)

Application-specific constraints

Full deployment
M∑
k=1

(
aik +H

( ∑
j,Rij=1

ajk

))
=

M∑
k=1

vk

Deployment with bounded number of instances∑
i∈C

M∑
k=1

aik⟨op⟩n |C | ≤ N, ⟨op⟩∈{=,≤,≥}, n∈N

Find:

▶ assignment matrix a with binary entries aik ∈ {0, 1} for i = 1,N,
k = 1,M, which are interpreted as follows:

aik =

{
1 if Ci is assigned to Vk

0 if Ci is not assigned to Vk .

▶ the type selection vector t with integer entries tk for k = 1,M,
representing the type (from a predefined set) of each VM leased.

Such that: the leasing price is minimal
M∑
k=1

vk · pk



Graph Neural Network Formulation

The first step in solving the edge classification problem is to model it as graph
data.

Heterogeneous graph:

▶ component nodes

▶ The features are (ID, CPU, Mem, Sto, FullDepl, UpperB, LowerB, EqualB).
▶ Edges between component nodes are determined by the application-specific

constraints except FullDepl, UpperB, LowerB, EqualB.
▶ Edges are specified using one-hot encoding on the possible application-

specific constraints: (Conflict, Co-location, RequireProvide,
ExclusiveDeployment, UpperB, LowerB, EqualB).

▶ VM nodes

▶ The features are (CPU, Mem, Sto, Price)
▶ No edges between two VM nodes!

Feature scaling:

▶ to [0, 1] is needed in order to prevent one feature from dominating while
preserving min-max relationships, crucial for prediction algorithms

▶ is needed for the hardware specifications/requirements and the VM price.

Edge classification

▶ Initially, all edges between a node of type component and one of type VM
are of type unlinked.

The task is to implement a GNN model in order to predict the type
(linked/unlinked) for all the edges.
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Solution

1. Generate the dataset which is used to train a GNN model of the
application to be deployed. This dataset, representing optimal deployment
plans, is obtained by multiple runs of the exact solver previously developed
by us.

2. Train a GNN model which predicts the assignments of components to
VMs as well as the VM Offers.

3. Transform the predictions into soft constraints to guide the search
exploration of the Base solver towards an optimal solution.
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Dataset generation

Large dataset to train the model
(
20
15

)
≈ 15000 different VM Offers inputs.
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Supervised GNN learning approach:

1. Data Preparation: graph representation and nodes and edges feature
extraction.

2. Graph Construction: application graph’s structure (nodes, edges, and their
relationships)
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Training a GNN model for edge classification

Supervised GNN learning approach:

3. Choosing Model Architecture which allows heterogeneity modeling and
edge classification.



Training a GNN model for edge classification

Supervised GNN learning approach:

4. The loss function is focal loss suitable for imbalanced sets.

5. Adam optimizer with the default parameters provided by DGL library.

6. Model Training, Validation and Testing

▶ train, test, validation: 60%, 20%, 20%
▶ batch size = 50
▶ training dataset size: min = 50, max = 10000
▶ #epochs: min = 30, max = 600

#
Sample
Size

#Ep Acc Time
Pred. T
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Pred. F
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GT True
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3 50 200 0.95 21.36 7 10
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11 100 400 0.95 87.92 8 13
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5. Adam optimizer with the default parameters provided by DGL library.

6. Model Training, Validation and Testing
▶ train, test, validation: 60%, 20%, 20%
▶ batch size = 50
▶ training dataset size: min = 50, max = 10000
▶ #epochs: min = 30, max = 600

#
Sample
Size

#Ep Acc Time
Pred. T
Links

Pred. F
Links

GT True
Links

3 50 200 0.95 21.36 7 10
7 100 100 0.95 21.92 7 13 8
11 100 400 0.95 87.92 8 13



Integrated GNN and Exact Techniques: Experimental Results

▶ the scalability of the GNN approach for increasing number of VM offers,
possibly previously unseen (see table), and

▶ the generalization of the GNN approach for applications characterized by
similar constraints between components but with different hardware
requirements (see the paper [9]).
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Experimental Analysis (cont’d)

Explanation of the FV symmetry breaker

IDSServer (C4)Balancer (C1)

Nginx (C3)Apache (C2) IDSAgent (C5)

Figure: Secure Web Container conflict graph. The components with green background
belong to the clique G .

VM1 VM2 VM3 VM4 VM5 VM6

C1 1 0 0 0 0 0

C2 0 0 1 0 1 0

C3 0 0 0 1 0 0

C4 0 1 0 0 0 0

C5 0 0 1 1 1 0

Table: Effect of FV symmetry breaking strategy



Integrated GNN and Exact Techniques: Experimental Results

▶ the scalability of the GNN approach for increasing number of VM offers,
possibly previously unseen (see table). Base = Z3

#o Solver Model#3 Model#7 Model#11 Opt. Price

20 Base 0.24 3.759
Base+FVPR 0.11
Base+GNN 0.12 0.12 0.07
Base+FVPR+GNN 0.12 0.09 0.10

40 Base 0.54 2.676
Base+FVPR 0.27
Base+GNN 0.28 0.33 0.28
Base+FVPR+GNN 0.29 0.28 0.29

250 Base 2.82 1.622
Base+FVPR 0.98
Base+GNN 0.76 0.77 1
Base+FVPR+GNN 1.40 1.39 1.15

500 Base 8.71 1.582
Base+FVPR 2.42
Base+GNN 4.56 2.92 1.5
Base+FVPR+GNN 3.09 3 3.01

27 Base 0.26 2.400
Base+FVPR 0.09
Base+GNN 0.10 0.14 0.14
Base+FVPR+GNN 0.10 0.10 0.07



Experimental Analysis (cont’d)

Using the GNN Prediction as Soft Constraints
Formalization of the assignment predictions as a binary 3D tensor pred with
prediko ∈ {0, 1} for i = 1,N, k = 1,M and o = 1,O:

prediko =

{
1 if Ci is assigned to Vj of type Oo

0 if Ci is not assigned to Vj of type Oo

From tensors to soft constraints

∃o∈1,O s.t. prediko =1 =⇒ aik =1∧
H∧

h=1

(
rhk=F

h
o

)
∧pk=Po

∄o∈1,O s.t. prediko =1 =⇒ aik =0

Diagram describing the integration of the GNN model with the Base solver



Experimental Analysis (cont’d)

Using the GNN Prediction as Soft Constraints The pred tensor for the first
component of the Secure Web Container application, generated from running
the GNN model prediction on the case study application with 10 VM offers,
looks like: 

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


where M = 6 rows and O = 10 columns.
The corresponding soft constraints are:

▶ for assignment matrix a:
(assert-soft (= a11 0))
(assert-soft (= a12 1))

(assert-soft (= a13 1))
(assert-soft (= a14 1))

(assert-soft (= a15 0))
(assert-soft (= a16 0))

▶ for type vector t:
(assert-soft (and (= PriceProv2 8.403)...))
(assert-soft (and (= PriceProv3 8.403)...))
(assert-soft (and (= PriceProv4 0.093)...))

where the predictions obtained for the VM offers type were t2 = 7,
t3 = 7, t4 = 5. For example, the VM Offer 5 has the specification
(1, 3750, 1000, 0.093).



Experimental Analysis (cont’d)

Implementation of soft constraints in Z3 optimization
Optimization in Z3:

1. If the soft constraints are added before the optimization function, then the
solver tries to satisfy as many as possible and will use the intermediate
results for the optimization function (multi-criterial optimization with
lexicographic option by default). ⇝ hence the soft constraints might
destry the actual optimim

2. If the soft constraints are declared after the optimization function, the
optimal value will be found without the soft constraints ⇝ this does not
exploit the benefits of soft constraints in guiding the solver to find faster
the solution.

We simulated soft constraints with pseudo-boolean and cardinality constraints.

Pseudo-Boolean constraint
A linear pseudo-Boolean constraint has the form:

∑
j

ai lj ▷ b where ai and b are

integer constants, lj are literals and ▷ is a relational operator.

Cardinality Constraint

A cardinality constraint is a constraint on the number of literals which are true
among a given set of literals.

In our case: atmost(k, {x1, x2, ..., xn}) is true if and only if at most k literals
among x1, x2, ..., xn are true.
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Future Work

▶ Investigate better the timings of Base+GNN and Base+FV+GNN on this
use case and others.

▶ Investigate the characteristics of the datasets.

▶ Improve the GNN model.

▶ New case studies, from different application domains.
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